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3.1 INTRODUCTION
Physical systems identified by permanently stable and reversible behavior are rare. Unstable
phenomena result from inherent fluctuations of the respective state variables. Near global equilibrium,
the fluctuations do not disturb the equilibrium; the trend toward equilibrium is distinguished by
asymptotically vanishing dissipative contributions. In contrast, nonequilibrium states can amplify the
fluctuations, and any local disturbances can even move the whole system into an unstable or metastable
state. This feature is an important indication of the qualitative difference between equilibrium and
nonequilibrium states.

Kinetic and statistical models often require more detailed information than is available to describe
nonequilibrium systems. Therefore, it may be advantageous to have a phenomenological approach
with thermodynamic principles to describe natural processes. Such an approach is the formalism used
in nonequilibrium thermodynamics to investigate physical, chemical, and biological systems with
irreversible processes. In the formalism, the Gibbs equation is a key relation since it combines the first
and second laws of thermodynamics. The Gibbs relation, combined with the general balance equations
based on the local thermodynamic equilibrium, determines the rate of entropy production. Quantifying
entropy production helps in analyzing the level of energy dissipation during a process, and in
describing coupled phenomena.

The first attempts to develop nonequilibrium thermodynamics theory occurred after the first
observations of some coupled phenomena of thermal diffusion and thermoelectric. Later, Onsager
developed the basic equations of the theory, and Casimir, Meixner, and Prigogine refined and
developed the theory further. This chapter outlines the principles of nonequilibrium thermodynamics
for systems not far from global equilibrium. In this region, the transport and rate equations are
expressed in linear forms, and the Onsager reciprocal relations are valid. Therefore, sometimes this
region is called the linear or Onsager region and the formulations are based on linear nonequilibrium
thermodynamics theory. In this region, instead of thermodynamic potentials and entropy, a
new property called entropy production appears. The formulation of linear nonequilibrium thermo-
dynamics has proven to be valid and useful for a wide range of transport and rate processes of physical,
chemical, and biological systems.
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3.2 LOCAL THERMODYNAMIC EQUILIBRIUM
A local thermodynamic state is determined as elementary volumes at individual points for a
nonequilibrium system. These volumes are small such that the substance in them can be treated as
homogeneous and contain enough molecules for the phenomenological laws to be applicable. This
local state shows microscopic reversibility that is the symmetry of all mechanical equations of motion
of individual particles with respect to time. In the case of microscopic reversibility for a chemical
system, when there are two alternative paths for a simple reversible reaction, and one of these paths is
preferred for the backward reaction, the same path must also be preferred for the forward reaction.
Onsager’s derivation of the reciprocal rules assumes microscopic reversibility. The reversibility of
molecular behavior gives rise to a kind of symmetry in which the transport processes are coupled to
each other. Although a thermodynamic system may not be in equilibrium, the local states may be in
local thermodynamic equilibrium; all intensive thermodynamic variables become functions of position
and time. The local equilibrium temperature is defined in terms of the average molecular translational
kinetic energy within the small local volume�

1

2
mv2

�
¼ 3

2
kBT

where kB is the Boltzmann constant and v is the velocity of molecules with mass m. Here the average
kinetic energy is limited to the translational kinetic energy of the molecules, which are treated as
point masses and the internal degrees of freedom such as molecular rotation and vibration are not
accounted.

The definition of energy and entropy in nonequilibrium systems can be expressed in terms of
energy and entropy densities u(T,Nk) and s(T,Nk), which are the functions of the temperature field T(x)
and the mole number density N(x); these densities can be measured. The total entropy and energy of
the system is obtained by the following integrations

S ¼
Z
V

fs½TðxÞ�; ½NkðxÞ
�g dV (3.1)

U ¼
Z
V

fu½TðxÞ�; ½NkðxÞ�g dV (3.2)

From the internal energy density u and entropy density s, we obtain the local variables of

ðvu=vsÞV ;Nk
¼ TðxÞ;

�ðvu=vVÞs;Nk
¼ P;

and

ðvs=vNkÞu ¼ �mðxÞ=TðxÞ
The densities in Eqs. (3.1) and (3.2) are dependent on the locally well-defined temperature. Also,

the classical thermodynamic equations such as the Gibbs and the GibbseDuhem equations
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are valid in local equilibrium. For a large class of nonequilibrium systems, thermodynamic properties
such as temperature, pressure, concentration, internal energy, and entropy are locally well-defined
concepts. Exceptions to the local thermodynamic equilibrium assumption are discussed in chapters
12e15.

Prigogine expanded the molecular distribution function in an infinite series around the equilibrium
molecular distribution function f0

f ¼ f0 þ f1 þ f2 þ/

The equation above is valid not only for an equilibrium system, but also for a nonequilibrium system
that is characterized by the equilibrium distribution function of ( f0 þ f1) representing a nonequilibrium
system sufficiently close to global equilibrium. Prigogine’s analysis applies only to mixtures of
monatomic gases and is dependent on the ChapmaneEnskog model. The domain of validity
of the local equilibrium is not known in general from a microscopic perspective. The range of validity
of the local thermodynamic equilibrium is determined only through experiments. Experiments show
that the postulate of local thermodynamic equilibrium is valid for a wide range of macroscopic systems
of common gases and liquids, and for most transport processes if the gradients of intensive thermo-
dynamic functions are small and their local values vary slowly in comparison with the local state of the
system. For chemical reactions, the reactive collision rates are relatively smaller than overall collision
rates. The change in an intensive parameter is comparable to the molecular mean free path, and energy
dissipation rapidly damps large deviations from global equilibrium. The local equilibrium concept is
not valid in highly rarefied gases where collisions are too infrequent. The extension of equilibrium
thermodynamics to nonequilibrium systems based on the local equilibrium assumption is a
well-accepted practice in nonequilibrium thermodynamics.

3.3 STATIONARY STATES
Intensive properties that specify the state of a substance are time independent in equilibrium systems
and in nonequilibrium stationary states. Extensive properties specifying the state of a system with
boundaries are also independent of time, and the boundaries are stationary in a coordinate system.
Therefore, the stationary state of a substance at any point is related to the stationary state of the system.

In a stationary state the total entropy does not change with time, and we have

dS

dt
¼ deS

dt
þ diS

dt
¼ 0 (3.3)

The term deS/dt is the reversible entropy change in time because of an entropy flow between the
system and its surroundings. On the other hand, diS/dt represents the rate of entropy production inside
the system.
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For the total entropy to be constant, the entropy flowing out of the system must be equal to the
entropy entering the system and the entropy generated within the system.

diS

dt
þ �Js;in � Js;out

� ¼ 0 (3.4)

Entropy change inside an elementary volume by irreversible phenomena is the local value of
the sum of entropy increments. By the second law of thermodynamics, the entropy production diS is
always positive for irreversible changes and zero for reversible changes. From Eqs. (3.3) and (3.4),
the entropy exchange with the surrounding must be negative at stationary state

deS

dt
¼ �diS

dt
¼ �Js;in � Js;out

�
< 0

The stationary state is maintained through the decrease in entropy exchanged between the system
and its surrounding. Therefore, the total entropy produced within the system must be discharged across
the boundary at stationary state.

For a system at a stationary state, boundary conditions do not change with time. Consequently, a
nonequilibrium stationary state is not possible for an isolated system for which deS/dt ¼ 0. In addition,
a steady state cannot be maintained in an adiabatic system in which irreversible processes are
occurring, since the entropy produced cannot be discharged, as an adiabatic system cannot exchange
heat with its surroundings. In equilibrium, all the terms in Eq. (3.3) vanish because of the absence of
both entropy flow across the system boundaries and entropy production due to irreversible processes,
and we have deS/dt ¼ diS/dt ¼ dS/dt ¼ 0.

3.4 BALANCE EQUATIONS AND ENTROPY PRODUCTION
Balance equations of extensive quantities describe a change in a system (except in rare gases and shock
waves). These balance equations also contain intensive quantities specifying the local state of a
continuous medium. Intensive parameters described by the macroscopic properties of the medium are
based on the behavior of many particles.

It is necessary to consider the mechanics of a continuous medium to determine the thermodynamic
state of a fluid. The properties of a fluid can be determined that are at rest relative to a reference frame
or moving along with the fluid. Every nonequilibrium intensive parameter in a fluid changes in time
and in space.

3.4.1 TOTAL DIFFERENTIAL
Consider the temperature as a function of time and space T ¼ T (t,x,y,z); the total differential of T is

dT ¼ vT

vt
dt þ vT

vx
dxþ vT

vy
dyþ vT

vz
dz

Dividing the total differential by the time differential, we obtain the total time derivative of T
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dT

dt
¼ vT

vt
þ vT

vx

dx

dt
þ vT

vy

dy

dt
þ vT

vz

dz

dt

The partial time derivative of T, vT=vt, shows the time rate of change of temperature of a fluid at a
fixed position at constant x, y, and z

dT

dt
¼ vT

vt

If the derivative in the equation above vanishes, then the temperature field becomes stationary. The
terms dx/dt, dy/dt, and dz/dt are the components of the velocity of the observer relative to the velocity
of the fluid.

3.4.2 SUBSTANTIAL DERIVATIVE
If the velocity of the observer is the same as the mass average velocity of the fluid v with components
vx, vy, and vz, then the rate of temperature change is given by

DT

Dt
¼ vT

vt
þ vx

vT

vx
þ vy

vT

vy
þ vz

vT

vz

or

DT

Dt
¼ vT

vt
þ v$VT (3.5)

The special operator, DT/Dt is the substantial time derivative, and means the time rate of change if
the observer moves with the substance.

A scalar or a vector function expressed in terms of v=vt can be converted into the substantial form;
for a scalar function T ¼ T(x, y, z, t), we have

r
DT

Dt
¼ vðrTÞ

vt
þ
�
vðrvxTÞ

vx

�
þ
�
vðrvyTÞ

vy

�
þ
�
vðrvzTÞ

vz

�

¼ r

�
vT

vt
þ vx

vT

vx
þ vy

vT

vy
þ vz

vT

vz

�
þ T

�
vr

vt
þ vðrvxÞ

vx
þ vðrvyÞ

vy
þ vðrvzÞ

vz

� (3.6)

The second term in the second line of Eq. (3.6) is the equation of continuity and vanishes, so that in
vector form Eq. (3.6) becomes

r
DT

Dt
¼ vðrTÞ

vt
þ ðV$r vTÞ

This equation is valid for every local quantity, which may be a scalar, an element of a vector, or an
element of a tensor.
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3.4.3 BALANCE EQUATIONS
An extensive quantity E for a fluid in volume V can be expressed in terms of the specific quantity e

E ¼
Z
V
r edV

The partial time derivative of E pertaining to the entire body is equal to the total differential

vE

vt
¼ dE

dt
¼ d

dt

Z
V
redV ¼

Z
V

vðreÞ
vt

dV (3.7)

In Eq. (3.7) the quantity re is determined per unit volume when the observer is at rest.
The amount of substance entering through an elementary surface area da per unit time is rv$da,

where da is a vector with magnitude da and pointing in a direction normal to the surface. Along
with the substance flow there is a convection flow rve, and the amount transported per unit time
is �R ðrve�$da. The conduction flow Je is a vector with the same direction as the flow, and the amount
transported per unit time by means of conduction without a flow of substance is �R Je$da. The
so-called source term, the rate of energy production inside the elementary volume of substance at a
given point is

_Eprod ¼ dE

dVdt

Hence, for the entire volume at rest relative to the coordinate system, the balance equation per unit
time Eq. (3.7) is expressed as

dE

dt
¼
Z
V

vðreÞ
vt

dV ¼ �
Z
A
ðr evÞ$da�

Z
A
Je$daþ

Z
V

_EproddV (3.8)

Using the GausseOstrogradsky theorem, the equation above can be written over the entire volume

dE

dt
¼
Z
V

vðreÞ
vt

dV ¼ �
Z
V
½V$ðr evÞ�dV �

Z
V
ðV$JeÞdV þ

Z
V

_EproddV (3.9)

From the equation above, the local balance equation for a fixed observer becomes

vðreÞ
vt

¼ �V$ðrevÞ � V$Je þ _Eprod (3.10)

The local balance equation for properties subject to a conservation law is called the conservation
equation, which is given for e as follows

vðreÞ
vt

¼ �V$ðrevÞ � V$Je

If the system is in a stationary state, the extensive property E does not change with time dE/dt ¼ 0,
and we have

V$ðJe þ revÞ ¼ 0 (3.11)

The equation above shows that the net amount of E exchanged through the boundary must be zero,
and the divergence of the sum of the conduction and convection flows governed by a conservation law

140 CHAPTER 3 FUNDAMENTALS OF NONEQUILIBRIUM THERMODYNAMICS



is equal to zero in the stationary state. For the values e ¼ 1, Je ¼ 0, and the source term _Eprod ¼ 0,
Eq. (3.10) becomes

vr

vt
¼ �V$ðrvÞ ¼ �rðV$vÞ � v$Vr (3.12)

The local balance equations for an observer moving along with the fluid are expressed in substantial
time derivative form. From Eq. (3.10), we can express the substantial time derivative of e by

r
De

Dt
¼ �V$Je þ _Eprod (3.13)

On the right side of this equation, the divergence of the convection flow of e, �V$ðr evÞ, vanishes
since the observer (coordinate system) is moving along with the fluid. In terms of the conservation law,
where the source term vanishes, Eq. (3.13) becomes

r
De

Dt
¼ �V$Je (3.14)

Engineering systems mainly involve a single-phase multicomponent fluid mixture with fluid
friction, heat transfer, mass transfer, and several chemical reactions. A local thermodynamic state of
the fluid is specified by two intensive parameters, for example, velocity of the fluid and the chemical
composition in terms of component mass fractions. For a unique description of the system, balance
equations must be derived for mass, momentum, energy, and entropy. The balance equations,
considered on a per-unit volume basis, can be written in terms of the partial time derivative with an
observer at rest, and in terms of the substantial derivative with an observer moving along with the fluid.
Later, the balance equations are used in the Gibbs relation to determine the rate of entropy production.
The balance equations allow us to clearly identify the importance of the local thermodynamic
equilibrium postulate in deriving the relationships for entropy production.

3.4.4 THE MASS BALANCE EQUATIONS
The mass flow of component i, rivi, is a vector showing the flow of a component relative to a
motionless coordinate system. On the other hand, diffusion flow shows the transport of a component
relative to a coordinate system moving at the reference velocity v. The diffusion flow relative to the
center-of-mass velocity v (or mass average velocity) is

ji ¼ riðvi � vÞ
where ðvi � vÞ is the diffusion velocity. Mass average velocity is

v ¼
Xn
i¼1

wivi

Here wi is the mass fraction of component i.We can express the molar diffusion flow Ji;M based on
the molar average velocity vM

Ji;M ¼ ciðvi � vMÞ with vM ¼
Xn
i¼1

xivi
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The sum of diffusion flows of all components is zero

Xn
i¼1

ji ¼
Xn
i¼1

Ji;M ¼
Xn
i¼1

Ji;V ¼ 0

Of the n diffusion flows, only n�1 of the flows are independent.
The mass balance equation for component i is like the general form given in Eq. (3.10) after setting

e ¼ wi and Je ¼ ji. The amount of component produced or consumed inside a unit volume per unit time
is the result of chemical reactions. The mass balance equation is

vri

vt
¼ �V$ðrivÞ � V$ji þMi

Xl
j¼1

nijJr; j

Here Jr,j is the chemical reaction rate per unit volume for reaction j, nij the specific stoichiometric
coefficient of species i in the chemical reaction j, and Mi the molecular mass of component i.

From Eqs. (3.5) and (3.14), we can represent the mass balance in the substantial time derivative

Dri
Dt

¼ vri

vt
þ v$Vri ¼ �V$ðrivÞ � V$ji þMi

Xl
j¼1

nijJr; j þ v$Vri (3.15)

Using Eq. (3.12) and (3.15) becomes

Dri
Dt

¼ �riðV$vÞ � V$ji þMi

Xl
j¼1

nijJr; j (3.16)

When an observer moves at the center-of-mass velocity of the fluid, the conservation equation from
the substantial derivative of the density becomes

Dr

Dt
¼ vr

vt
þ v$Vr ¼ �rðV$vÞ

The conservation of mass with the specific volume v ¼ 1/r is

Dv

Dt
¼ vðV$vÞ (3.17)

Using Eq. (3.16), the balance equation for the amount can also be written in terms of mass
fraction wi

vðrwiÞ
vt

¼ �V$ðr wivÞ � V$ji þMi

Xl
j¼1

nijJr; j (3.18)

With the substantial derivative, the equation above becomes

r
DðwiÞ
Dt

¼ �V$ji þMi

Xl
j¼1

nijJr; j (3.19)

In the stationary state dm/dt ¼ 0, and we have V$ðrvÞ ¼ 0.
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3.4.5 THE MOMENTUM BALANCE EQUATIONS
Fluid motion may be described by applying Newton’s second law to a particle. The momentum flow of
a substance rvv is equal to the product of the mass flow rv and the barycentric velocity. Newton’s
second law of motion states that the change in the momentum of a body is equal to the resultant of all
forces, mass force F and surface force s, acting on that body. If Fi is the force exerted per unit mass of
component i, we have

F ¼ 1

r

Xn
i¼1

riFi ¼
Xn
i¼1

wiFi

The mass forces may be the gravitational force, the force due to the rotational motion of a system,
and the Lorentz force that is proportional to the vector product of the molecular velocity of component
i and the magnetic field strength. The normal stress tensor u produces a surface force.

The time derivative of the momentum density is the conservation of momentum

v

vt
ðrvÞ ¼ �V$uþ rF (3.20)

By considering the following relations (Bird et al., 2002)

u ¼ rvvþ Pdþ s

V$ðPdÞ ¼ VP

Eq. (3.20) becomes

v

vt
ðrvÞ ¼ �V$ðr vvÞ � VP� V$sþ r F (3.21)

where d is the unit tensor. The terms on the right side represent the change of momentum due to the
convection momentum flow V$ðrvvÞ, the pressure force VP, the viscous force V$s, and the mass force
rF, respectively. The momentum balance equation for a coordinate system moving along with the fluid
is given by using the substantial derivative

r
Dv

Dt
¼ �VP� V$sþ r F (3.22)

The left side of the equation above contains the center-of-mass acceleration dv/dt. Using the
Newtonian fluid expression for the stress with the constant density and viscosity, we have the
NaviereStokes equation

r
Dv

Dt
¼ �VPþ mV2vþ r F

The state of mechanical equilibrium is characterized by vanishing acceleration dv/dt ¼ 0. Usually,
mechanical equilibrium is established faster than thermodynamic equilibrium, for example, in the
initial state when diffusion is considered. In the case of diffusion in a closed system, the acceleration is
very small, and the corresponding pressure gradient is negligible; the viscous part of the stress tensor
also vanishes s ¼ 0. The momentum balance, Eq. (3.20), is limited to the momentum conservation
equation
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VP ¼
Xn
i¼1

riFi ¼ r F

Hence, the pressure gradient is equal to the sum of the mass forces acting on the substance in a
unit volume.

3.4.6 THE ENERGY BALANCE EQUATIONS
The time variation of the total energy e per unit volume is subject to a law of conservation, and given in
terms of convection flow r ev and conduction flow Je

vðreÞ
vt

¼ �V$ðr evÞ � V$Je (3.23)

The total specific energy e of a substance is

e ¼ uþ 1

2
v2 þ ep

and consists of the specific internal energy u, the specific kinetic energy 1=2v2, and the specific
potential energy ep.

The conduction flow of the total energy Je consists of the conduction flow of the internal energy Ju
the potential energy flow

P
i
epiji due to the diffusion of components, and the work of surface forceu$v

per unit surface area, and is expressed as follows

Je ¼ Ju þ
Xn
i¼1

epiji þu$v

The divergence of the total energy flow becomes

V$Je ¼ V$

 
Ju þ

Xn
i¼1

epiji þu$v

!
(3.24)

By using the mass flow, ji ¼ riðvi � vÞ, the time variation of the potential energy of a unit volume
of the fluid is given by

vðrepÞ
vt

¼ �V$

 
r epvþ

Xn
i¼1

epiji

!
� r F$v�

Xn
i¼1

ji$Fi þ
Xn
i¼1

epiMi

Xl
j¼1

nijJrj (3.25)

where the mass force Fi is associated with the derivative of the specific potential energy epi of
component i by

Fi ¼ �Vepi

with the properties of conservative mass forces

vepi
vt

¼ 0;
vFi

vt
¼ 0
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The last term on the right side of Eq. (3.25) is zero if the potential energy is conserved for the
chemical reaction j

Xn
i¼1

epiMinij ¼ 0

The balance equation for the kinetic energy is obtained by scalar multiplication of the momentum
balance, Eq. (3.22), and the mass average velocity. By using relations analogous to Eq. (3.12)
v$ð � VPÞ ¼ �V$ðPvÞ þ PðV$vÞ and v$ð � V$sÞ ¼ �V$ðs$vÞ þ s : ðVvÞ, we obtain

r
D
	
1 =

2v2



Dt
¼ �V$ðPvÞ � V$ðs$vÞ þ PðV$vÞ þ s : ðVvÞ þ rv$F (3.26)

The time variation of the kinetic energy per unit volume (for a motionless reference frame) is

v
	
1 =

2 rv2



vt
¼ �V$

	
1 =

2 rv2v


� V$ðPvÞ � V$ðs$vÞ þ PðV,vÞ þ s : ðVvÞ þ rv$F (3.27)

In Eq. (3.27), the term �V$
	
1
2 rv

2v


is the convection transport of kinetic energy, �V$ðPvÞ is the

work of the pressure, �V$ðs$vÞ is the work of the viscous forces, and rv$F is the work of the mass
forces. Part of the kinetic energy PðV$vÞ is transformed reversibly into internal energy, and the part s :
ðVvÞ is transformed irreversibly and dissipated (Bird et al., 2002).

We find the rate of change of the internal energy for an observer at rest by subtracting Eqs. (3.25)
and (3.27) from the total energy conservation relation Eq. (3.23) and using Eq. (3.24)

r
vu

vt
¼ �V$ðruvÞ � V$Ju � PðV$vÞ � s : ðVvÞ þ

Xn
i¼1

ji$Fi (3.28)

The term �V$ðruvÞ is the divergence of the convection internal energy flow, �V$Ju is the
divergence of the conduction internal energy flow, �PðV$vÞ is the reversible increment of internal
energy due to volume work �s : ðVvÞ is the irreversible increment of internal energy due to viscous

dissipation, and
Pn

i¼1 ji$Fi is the transport of potential energy by diffusion flows. We can represent
Eq. (3.28) in terms of the substantial derivative

r
Du

Dt
¼ �V$Ju � PðV$vÞ � s : ðVvÞ þ

Xn
i¼1

ji$Fi (3.29)

Comparing Eq. (3.29) with Eq. (3.26) the terms PðV$vÞ and s : ðVvÞ appear with opposite sign in
both equations. They represent the interconversion between the kinetic and the internal energy. The
reversible conversion PðV$vÞ can be positive if the fluid expands or negative in the converse. The
irreversible conversion �s : ðVvÞ is proportional to the square of the velocity gradient and always
positive since for a Newtonian fluid s ¼ �mVv.

The internal energy balance equation for the fluid is based on the momentum balance equation.
The assumption of local thermodynamic equilibrium will enable us to introduce the thermodynamic
relationships linking intensive quantities in the state of equilibrium and to derive the internal energy
balance equation based on equilibrium partial quantities. By assuming that the diffusion is a slow
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phenomenon, �Pn
i
ji
�
r << rv2, the change of the total energy of all components per unit volume

becomes

v

vt

"Xn
i¼1

ri

�
ui þ 1

2
v2i þ epi

�#
¼ v

vt

�
r

�
uþ 1

2
v2 þ ep

�
(3.30)

This form is based on the concept of local thermodynamic equilibrium. From Eq. (3.30), the
convection flow of the total energy is

Xn
i¼1

ri

�
ui þ 1

2
v2i þ epi

�
vi ¼

Xn
i¼1

uiJi þ r

�
uþ 1

2
v2 þ rep

�
vþ

Xn
i¼1

epiJi ¼
Xn
i¼1

uiJi þ revþ
Xn
i¼1

epiJi

(3.31)

Eq. (3.31) contains the convection flow of the total energy and energy changes due to the diffusion
flows. If J0q is the pure heat conduction without a flow of internal energy due to diffusion of the
substance, the total energy conservation given in Eq. (3.23) becomes

vðreÞ
vt

¼ �V$ðrevÞ � V$

 
J0q þ

Xn
i¼1

uiji þ
Xn
i¼1

epiji �u$v

!
(3.32)

where u$v is the work of surface force per unit surface area and u is the normal stress tensor. We may
relate the terms Ju; J

0
q; and ji by

Ju ¼ J0q þ
Xn
i¼1

uiji

The second term on the right represents the net flow of internal energy transported along with the
diffusion of species i.

EXAMPLE 3.1 CONSERVATION OF ENERGY
Describe the change of energy in closed and open subsystems in a composite system.

Solution:

The change of energy dE has two parts; deE is the part exchanged with the surroundings, and diE is the part produced or

consumed within the system

dE ¼ deE þ diE (a)

a. Closed subsystems: For a closed subsystem with a chemical reaction characterized by the extent of reaction ε, the

total differential of E with respect to the variables V,T, and ε is

dE ¼
�
dE

vV

�
T;ε

dV þ
�
dE

vT

�
V;ε

dT þ
�
dE

vε

�
T;V

dε (b)

The energy flow from the surroundings is equal to the sum of the changes in heat and the mechanical work (pressure

work)

dE ¼ dqþ PdV (c)

Combination of Eqs. (b) and (c) yields

dq ¼ qvdV þ CvdT � DHrdε
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With Cv ¼
�
vE
vT

�
V ;ε

, qv � P ¼
�
vE
vV

�
T ;ε

, �DHr ¼
�
vE
vε

�
V;T

where Cv is the heat capacity at constant volume and specified value of ε, qv is the heat effect of pressure work

(compression) at constant T, and DHr is the heat of reaction.In terms of enthalpy, the energy conservation is

dH ¼ dqþ VdP

The total differential of enthalpy in terms of P,T, and ε leads to

dH ¼
�
dH

vP

�
T;ε

dPþ
�
dH

vT

�
P;ε

dT þ
�
dH

vε

�
T ;P

dε

dq ¼ HidPþ CpdT � DHrdε

with the following definitions: Cp ¼
	
vH
vT



P;ε

, Hi þ V ¼
	
vH
vP



T ;ε

, �DHr ¼
	
vH
vε



T ;P

where Cp is the heat capacity at

constant pressure and ε, and Hi is the specific molar enthalpy of species i.

b. Open subsystems: Eq. (c) for an open subsystem must account for the exchange of matter with the environment, and

is modified as follows

dE ¼ dq0 þ PdV ðfor� dVÞ
Here dq0 accounts for the heat flow due to heat transfer as well as mass transfer. The enthalpy also is modified as

follows

dH ¼ dq0 þ VdP ðfor� dPÞ
Subsystem I and II may both exchange matter and energy, and we have

dHI ¼ dIq0 þ V IdPI; dHII ¼ dIIq0 þ V IIdPII

where dIq0 is the total flow of energy by phase I for a time interval of dt. By assuming equal pressures P ¼ PI ¼ PII,

we have the following change of the total enthalpy

dH ¼ dIq0 þ dIIq0 þ �V I þ V II
�
dP

Comparing this equation with the first law of thermodynamics dH ¼ dq� VdP (for a closed system and for �dP), we

obtain

dq ¼ dIq0 þ dIIq0

where dIq0 is the summation of ordinary heat flow from the surroundings dIeq plus the energy flow dIiq
0 from subsystem II

dIq0 ¼ dIeqþ dIiq
0; dIIq0 ¼ dIIe qþ dIIi q

0 (d)

The total heat flow from the surroundings is: dq ¼ dIeqþ dIIe q Therefore, from Eq. (d), we have

dIiq
0 þ dIIi q

0 ¼ 0 (e)

The equation above suggests that the energy flows exchanged between subsystem I and II are equal with opposite signs.

3.4.7 THE ENTROPY BALANCE EQUATIONS
The entropy balance is

vðrsÞ
vt

¼ �V$ðrsvÞ � V$Js þ s (3.33)
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The equation above shows that the rate of change of the entropy per unit volume of substance is due
to the convection entropy flow rsv, the conduction entropy flow Js, and the entropy source strength s.

The conduction entropy flow is

Js ¼
J00q
T

þ
Xn
i¼1

siji (3.34)

The conduction entropy flow consists of the heat flow J00q and the diffusion flow ji. The J
00
q is reduced

heat flow that is the difference between the change in energy and the change in enthalpy due to matter
flow. With the substantial derivative and using Eq. (3.34), we obtain the entropy balance equation
based on local thermodynamic equilibrium

r
Ds

Dt
¼ �V$

 
J00q
T

þ
Xn
i¼1

siji

!
þ s (3.35)

3.5 ENTROPY PRODUCTION EQUATION
If the local thermodynamic equilibrium holds, the Gibbs relation in terms of specific properties is

Tds ¼ duþ Pdv�
Xn
i¼1

midwi (3.36)

The equation above can be applied to a fluid element moving with the mass average velocity v.
After replacing the differential operators with substantial time derivative operators, we have

r
Ds

Dt
¼ r

T

Du

Dt
þ rP

T

Dv

Dt
� r

T

Xn
i¼1

mi
Dwi

Dt
(3.37)

The individual terms on the right side of Eq. (3.37) are substituted by Eq. (3.29)

r
Du

Dt
¼ �V$Ju � PðV$vÞ � s : ðVvÞ þ

Xn
i¼1

ji$Fi

by Eq. (3.17)

rP
Dv

Dt
¼ PðV$vÞ

and by Eq. (3.19)

r
Xn
i¼1

mi
DðwiÞ
dt

¼ �
Xn
i¼1

miðV$jiÞ �
Xl
j¼1

AjJrj

where the affinity A of a chemical reaction j is Aj ¼ �Pn
i¼1

Miminij. After the substitutions of the
relations above, Eq. (3.37) becomes
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r
Ds

Dt
¼ �V$Ju

T
� 1

T
s : ðVvÞ þ 1

T

Xn
i¼1

ji$Fi þ 1

T

Xn
i¼1

miðV$jiÞ þ
1

T

Xl
j¼1

AjJrj (3.38)

Using the following transformations

V$Ju
T

¼ V$

�
Ju
T

�
þ 1

T2
Ju$VT ;

mi

T
ðV$jiÞ ¼ V$

	mi
T
ji



� ji$V

	mi
T



Eq. (3.38) reduces to

r
Ds

Dt
¼ �V$

0
BB@
Ju �

Pn
i¼1

miji

T

1
CCA� 1

T2
Ju$VT � 1

T

Xn
i¼1

ji$
h
TV
	mi
T



� Fi

i
� 1

T
s : ðVvÞ þ 1

T

Xl
j¼1

AjJrj

(3.39)

Comparison of the balance Eqs. (3.35) and (3.39) allows identifying the entropy flow and the
entropy source strength contributions. It yields an expression for the conduction entropy flow

Js ¼
J00q
T

þ
Xn
i¼1

siji ¼
1

T

 
Ju �

Xn
i¼1

miji

!
(3.40)

Using the relation between the chemical potential and enthalpy mi ¼ hi � Tsi ¼ ui þ Pvi � Tsi we
can relate the second law heat flow J00q, the conduction energy flow Ju, and the pure heat flow J0q as
follows

J00q ¼ Ju �
Xn
i¼1

hiji ¼ J0q �
Xn
i¼1

Pviji (3.41)

Heat flow can be defined in various ways if diffusion occurs in multicomponent fluids. The concept
of heat flow emerges from a macroscopic treatment of the energy balance or the entropy balance. The
internal energy of a substance is related to the molecular kinetic energy and the potential energy of the
intermolecular interactions. If a molecule travels without colliding with other molecules, the loss of
kinetic energy is due to diffusion. If the kinetic energy loss is the result of molecular collisions, it is
classified as heat conduction.

However, changes in the potential energy of intermolecular interactions are not uniquely separable.
There is ambiguity in defining the heat flow for open systems. We may split U into a diffusive part and
a conductive part in several ways and define various numbers of heat flows. In the molecular mech-
anism of energy transport, the energy of the system is associated with the kinetic energy of the
molecules and with the potential energy of their interactions. The kinetic energy changes in an
elemental volume are easily separated. If a molecule leaves the volume, the kinetic energy loss may be
due to diffusion. If the kinetic energy loss occurs because a molecule at the surface of the volume
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transfers energy by collision to a molecule outside the volume, then this loss may be called heat flow.
However, the potential energy of molecular interactions is the sum of the potential energies of
interactions for each molecular pair. When some molecules leave the volume and other molecules
collide at the surface with molecules outside the volume, they produce a complicated change in the
potential energy. These changes cannot be uniquely separated into the contributions of pure diffusion
and of molecular collisions.

From Eqs. (3.35), (3.39), and (3.40), the entropy source strength or the rate of local entropy
production per unit volume s is defined by

s ¼ Ju$V

�
1

T

�
� 1

T

Xn
i¼1

ji$
h
TV
	mi
T



� Fi

i
� 1

T
s : ðVvÞ þ 1

T

Xl
j¼1

AjJrj � 0 (3.42)

and is always positive. The equation above shows that s results from a sum of the products of con-
jugate flows and forces

s ¼
Xn
k¼1

JkXk � 0

Eq. (3.42) identifies the following independent flows and forces to be used in the phenomenological
equations:

• Heat transfer: Xq ¼ V

�
1
T

�

• Mass transfer: Xi ¼ Fi

T � V
	
mi

T



with V

	
mi

T



¼ V

	
mi

T



T
þ hiV

�
1
T

�
• Viscous dissipation: Xv ¼ �1

T ðVvÞ
• Chemical reaction:

Aj

T ¼ �Pn
i¼1

nij
Mimi

T ( j ¼ 1,2, .,l)

Eq. (3.42), first derived by Jaumann in 1911, determines the local rate of entropy production by
summing four distinctive contributions as a result of the products of flows and forces:

• Entropy production associated with heat transfer: sq ¼ JuXq

• Entropy production due to mass transfer: sm ¼ Pn
i¼1

jiXi

• Entropy production because of viscous dissipation of fluid: sV ¼ s : Xv

• Entropy production arising from chemical reactions: sc ¼Pl
jJrj

Aj

T

Eq. (3.42) consists of three distinct sums of the products that are scalars with rank zero s0, vectors
with rank one s1, and tensors with rank two s2

s0 ¼ s00 :
��ðV$vÞ

T

�
þ
Xl
j¼1

Aj

T
Jrj � 0 (3.43)
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s1 ¼ Ju$V

�
1

T

�
þ 1

T

Xn
i¼1

ji$
h
Fi � TV

	mi
T


i
� 0 (3.44)

s2 ¼ s0 :

 
�ðVvÞS

T

!
� 0 (3.45)

where s : ðVvÞ ¼ s0 : ðVvÞS þ s00 : ðV$vÞ. The tensor s00 is one third of the trace of the viscous stress

tensor s ¼ s0 þ ds00. Similarly, we split the tensor ðVvÞ ¼ ðVvÞS þ 1
3 dðV$vÞ as the sum of a

symmetric part and antisymmetric part. By construction, the trace of the symmetric parts is zero and as
usual, the double dot product of antisymmetric and symmetric tensor vanishes. According to
CurieePrigogine’s principle, in isotropic medium, only coupling between phenomena of tensorial
characters differing by an even number of ranks is possible. The s00 : ð � ðV$vÞ=TÞ contribution is
related to the rate of change of specific volume and is due to the bulk viscosity.

3.5.1 RATE OF ENTROPY PRODUCTION
The time derivative of entropy production is called the rate of entropy production, and can be
calculated from the laws of the conservation of mass, energy, and momentum, and the second law of
thermodynamics expressed as equality. If the local entropy production s is integrated over the volume,
it is called the volumetric rate of entropy production

P ¼ diS

dt
¼
Z
V
sdV ¼

Z
V

X
i

JiXidV

This integration enables one to determine the total entropy production. When phenomena at the
interface between two phases are considered, the amount of entropy produced is taken per unit surface
area.

Nonequilibrium thermodynamics estimates the rate of entropy production for a process. This
estimation is based on the positive and definite entropy due to irreversible processes and of Gibbs
relation

TdS ¼ dU þ PdV �
X

midNi

Entropy depends explicitly only on energy, volume, and concentrations because the Gibbs relation
is a fundamental relation and is valid even outside thermostatic equilibrium.

The rate of entropy production can be split into three parts:

s ¼ so þ s1 þ s2

where so is the scalar, s1 is the vectorial, and s2 is the tensorial (rank two) parts as shown in
Eqs. (3.43)e(3.45). The choice of thermodynamic forces and flows must ensure that in the equilibrium
state when the thermodynamic forces vanish (Xi ¼ 0), the entropy production must also be zero. In
contrast to entropy, the rate of entropy production is not a state function since it depends on the path
taken between the given states.
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The loss of energy is directly proportional to the rate of entropy production because of irreversible
processes in a system. The loss of energy may be estimated based on the temperature of the
surroundings of the system To, and we have

_Eloss ¼ mTo

�
diS

dt

�
¼ ðkgÞðKÞðkJ=kg s KÞ ¼ kW (3.46)

As the equation above indicates, the surrounding conditions represent a state where the process
reaches equilibrium at which the thermodynamic driving forces vanish. The value of energy _Eloss is the
rate of energy dissipated to the surroundings.

3.5.2 DISSIPATION FUNCTION
From the rate of entropy production and the absolute temperature, we derive the dissipation function
J, which is also a positive quantity

J ¼ Ts ¼ T
X

JkXk � 0

The increment of the dissipation function can be split into two contributions

dJ ¼ dXJþ dJJ

where dXJ ¼ T
P
k

JkdXk and dJJ ¼ T
P
k

XkdJk. When the system is not far away from global

equilibrium, and the linear phenomenological equations are valid, we have dXJ ¼ dJJ ¼ dJ=2, and
a stationary state satisfies dJ � 0.

The dissipation function for l chemical reactions in terms of the affinity A and the velocity of the
reaction Jr is

J ¼ T
Xl
j

JrjðAj=TÞ � 0

The change of entropy as a result of the irreversible phenomena inside a closed adiabatic system is
always positive. This principle allows for the entropy to decrease at some place in the systems as long
as a larger increase in the entropy at another place compensates the loss. The quantities s and J are
scalars; they are the products of two scalars, the dot product of two vectors, or the double dot products
of two tensors of rank two.

3.6 LINEAR NONEQUILIBRIUM THERMODYNAMIC POSTULATES
The linear nonequilibrium thermodynamics approach mainly is based on the following four postulates:

1. The quasiequilibrium postulate states that systems are not far from equilibrium; the gradients, or
the thermodynamic forces are not too large. Within the system, local thermodynamic equilibrium
holds.

2. All flows in the system are a linear function of all the forces involved; the proportionality
constants in these equations are the phenomenological coefficients.
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3. The matrix of phenomenological coefficients is symmetric provided that the conjugate flows and
forces are identified by the entropy production equation or the dissipation function.

4. The CurieePrigogine principle states that in an isotropic system, no coupling of flows and forces
occurs if the tensorial order of the flows and forces differs by an odd number. However, in an
anisotropic medium, such couplings are possible.

The field of linear nonequilibrium thermodynamics provides a new insight into the transport and
rate processes, as well as the coupled processes in physical, chemical, electrochemical, and biological
systems. Nonequilibrium thermodynamics identifies the conjugated flows and forces from the rate of
entropy production or from the dissipation function and establishes the phenomenological equations
with these forces and flows. Onsager’s reciprocal relations relate the phenomenological coefficients
pertaining to interactions or coupling between the processes. When the phenomenological equations
relate the conjugate forces and flows linearly, the phenomenological coefficients obey the Onsager
reciprocal relations. Therefore, the reciprocal rules reduce the number of unknown coefficients, which
are related to the transport and rate coefficients.

There exist many “phenomenological laws”; for example, Fick’s law relates to the flow of a
substance and its concentration gradient, and the mass action law explores the reaction rate and
chemical concentrations or affinities. Ohm’s law and Fourier’s law are also phenomenological laws.
When two or more of these phenomena occur simultaneously in a system, they may couple and induce
new effects, such as facilitated and active transport in biological systems. In active transport, a sub-
strate can flow against the direction imposed by its thermodynamic force. Without the coupling, such
“uphill” transport would be in violation of the second law of thermodynamics. Therefore, dissipation
due to either diffusion or chemical reaction can be negative only if these two processes couple and
produce a positive total entropy production.

The phenomenological coefficients are important in defining the coupled phenomena. For example,
the coupled processes of heat and mass transport give rise to the Soret effect (which is the mass
diffusion due to heat transfer), and the Dufour effect (which is the heat transport due to mass diffusion).
We can identify the cross-coefficients of the coupling between the mass diffusion (vectorial process)
and chemical reaction (scalar process) in an anisotropic membrane wall. Therefore, the linear
nonequilibrium thermodynamics theory provides a unifying approach to describing various processes
usually studied under separate disciplines.

The form of the expressions for the rate of entropy production does not uniquely determine the
thermodynamic forces or generalized flows. For an open system, for example, we may define the
energy flow in various ways. We may also define the diffusion in several alternative ways depending on
the choice of reference average velocity. Thus, we may transform the flows and the forces in various
ways. If such forces and flows, which are related by the phenomenological coefficients obeying the
Onsager relations, are subjected to a linear transformation, then the dissipation function is not affected
by that transformation.

An isotropic system cannot support a vector quantity associated with it. Therefore, the vectorial
flows can only be related to the vector forces. The scalar reaction rates can be functions of the scalar
forces and the trace of the dyadic, but not the vector forces. According to the CurieePrigogine
principle, vector and scalar quantities interact only in an anisotropic medium. This principle has
important consequences in chemical reactions and transport processes taking place in living cells.
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3.7 GRADIENT OF CHEMICAL POTENTIAL AT CONSTANT TEMPERATURE
Chemical potential is a function of T, Ni, and P, and the total differential of chemical potential is

dmi ¼
�
vmi

vNi

�
T ;P

dNi þ
�
vmi

vT

�
Ni;P

dT þ
�
vmi

vP

�
Ni;T

dP (3.47)

Using the Gibbs energy density G, the second partial term becomes the partial molar entropy of
species i �

vmi

vT

�
Ni;P

¼ v

vT

�
vG

vNi

�
P;T

¼ v

vNi

�
vG

vT

�
P;T

¼ �
�
vS

vNi

�
P;T

¼ �Si

If we consider a system under mechanical equilibrium, dP ¼ 0, Eq. (3.47) then becomes

Vmi ¼ ðVmiÞP;T � SiVT or Vmi þ SiVT ¼ ðVmiÞP;T (3.48)

3.8 SIMULTANEOUS HEAT AND MASS TRANSFER
Eq. (3.44) represents the entropy production for vectorial processes of heat and mass transfer. In
Eq. (3.44), the conduction energy flow can be replaced by the heat flow J00q using Eq. (3.41) and the total
potential m� comprising the chemical potential and the potential energy per unit mass of component i
mi� ¼ mi þ epi where Vepi ¼ �Fi. Using Eq. (3.48), the isothermal gradient of the total potential is

VTm
�
i ¼ Vmi þ SiVT þ Vepi

From the thermodynamic force for mass transfer, we have

TV
	mi
T



� Fi ¼ Vmi � mi

VT

T
þ Vepi ¼ VTm

�
i � Hi

VT

T

where mi ¼ Hi � TSi. Using the relation above, we can rearrange Eq. (3.44) as follows

s1 ¼ J00q$V
�
1

T

�
� 1

T

Xn
i¼1

ji$VTm
�
i � 0 (3.49)

Since only the n�1 diffusion flows are independent, we have

Xn
i¼1

ji$VTm
�
i ¼

Xn�1

i¼1

ji$VT

�
m�i � m�n

�
Introducing this equation into Eq. (3.49), we have

s1 ¼ J00q$V
�
1

T

�
� 1

T

Xn�1

i¼1

ji$VT

�
m�i � m�n

� � 0

Therefore, the thermodynamic driving force of mass flow becomes

Xi ¼ 1

T
VT

�
m�i � m�n

�
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We relate the dissipation function to the rate of local entropy production using Eqs. (3.42)e(3.45)

J ¼ Ts ¼ Tðs0 þ s1 þ s2Þ ¼ J0 þJ1 þJ2

If the dissipation function identifies the independent forces and flows, and using
TVð1=TÞ ¼ �Vðln TÞ then we have

J0 ¼ �s00 : ðV$vÞ þ
Xl
j¼1

AjJrj � 0

J1 ¼ �J00q$Vln T �
Xn�1

i¼1

ji$VT

�
m�i � m�n

� � 0 (3.50)

J2 ¼ �s0 : ðVvÞS � 0

Using the following transformation of the thermodynamic force for mass transfer

TV
	mi
T



� Fi ¼ Vmi �

mi

T
VT þ Vepi ¼ Vm�i �

mi

T
VT

and

ðVmiÞP;T ¼ Vmi þ SiVT and Js ¼
J00q
T

þ
Xn
i¼1

Siji

Therefore, Eq. (3.50) becomes

J1 ¼ �Js$VT �
Xn�1

i¼1

ji$V
�
m�i � m�n

� � 0

As shown by Prigogine, for diffusion in mechanical equilibrium, any other average velocity may
replace the center-of-mass velocity, and the dissipation function does not change. When diffusion
flows are considered relative to various velocities, the thermodynamic forces remain the same and only
the values of the phenomenological coefficients change.

The formulation of linear nonequilibrium thermodynamics is based on the combination of the first
and second laws of thermodynamics with the balance equations including the entropy balance. These
equations allow additional effects and processes to be considered. The linear nonequilibrium ther-
modynamics approach is widely recognized as a useful phenomenological theory that describes the
transport and rate processes without the need for the detailed coupling mechanisms of the coupled and
complex processes.

3.9 PHENOMENOLOGICAL EQUATIONS
When systems are near global equilibrium, linear relations exist between flows Ji and thermodynamic
driving forces Xk

Ji ¼ LikXk (3.51)
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where the parameters Lik are called the phenomenological coefficients. For example, Fourier’s law
relates heat flow to the temperature gradient, while Fick’s law provides a relation between mass
diffusion and concentration gradient. The temperature and concentration gradients are the thermo-
dynamic forces. The Fourier and Fick laws consider a single force and a single flow and are not capable
of describing coupled heat and mass flows. Choice of a force Xi conjugate to a flow Ji requires that the
product JiXi has the dimension of entropy production. The validity of Eq. (3.51) should be determined
experimentally for a certain type of process; for example, linear relations hold for an electrical
conductor that obeys Ohm’s law. Fluctuations occurring in turbulent flow deviate relatively little from
the local equilibrium state.

If a nonequilibrium system consists of several flows caused by various forces, Eq. (3.51) may be
generalized in the linear region of the thermodynamic branch (Fig. 2.2 in Chap. 2), and we obtain

Ji ¼
X
k

LikXk (3.52)

These equations are called the phenomenological equations, which are capable of describing
multiflow systems and the induced effects of the nonconjugate forces on a flow. Generally, any force Xi

can produce any flow Ji when the cross-coefficients are nonzero. Eq. (3.52) assumes that the induced
flows are also a linear function of nonconjugated forces. For example, ionic diffusion in an aqueous
solution may be related to concentration, temperature, and the imposed electromotive force.

By introducing the linear phenomenological equations into the entropy production, s ¼P JX, we
have

s ¼
Xn
i;k¼1

LikXiXk � 0 (3.53)

This equation shows that the entropy production is a quadratic form in all the forces. In continuous
systems, the base of reference for diffusion flow affects the values of transport coefficients and the
entropy due to diffusion. Prigogine proved the invariance of entropy for an arbitrary base of reference
if the system is in mechanical equilibrium (dv/dt ¼ 0) and the divergence of viscous tensors vanishes.

Eq. (3.53) leads to a quadratic form

s ¼
0
@Xn

i¼1

LiiX
2
i þ

Xn
i;k¼1

Lik þ Lki
2

XiXk

1
A � 0 ðiskÞ (3.54)

In matrix form, the equation above becomes,......

s ¼
Xn
i;k¼1

LikXiXk ¼ ½X1 X2.Xn�

2
6664
L11L12::::L1n

L21L22:::L2n

::::::::::::::::::::

Ln1Ln2::::Lnn

3
7775
2
6664
X1

X2

::::

Xn

3
7775 � 0 (3.55)

A necessary and sufficient condition for s � 0 is that all its principal minors be nonnegative���� Lii LikLki Lkk

���� ¼ LiiLkk � LikLki � 0
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If only a single force occurs, Eq. (3.55) becomes

s ¼ LiiX
2
i � 0

and then the phenomenological coefficients cannot be negative Lii � 0. For a system at metastable
equilibrium, we may have Ji ¼ 0, s ¼ 0 and Xks0. Otherwise, all forces and flows are independent,
and the inequality sign holds in Eq. (3.55).

3.9.1 FLOWS
Mass flow, heat flow, and chemical reaction rate are some examples of the “flows” Ji. The flows may
have vectorial or scalar characters. Vectorial flows are directed in space, such as mass, heat, and
electric current. Scalar flows have no direction in space, such as those of chemical reactions. The other
more complex flow is the viscous flow characterized by tensor properties. At equilibrium state, the
thermodynamic forces become zero and hence the flows vanish

Ji;eqðXi ¼ 0Þ ¼ 0

As an example, the diffusion flow vector Ji for component i is the number of moles per unit area a
per unit time t in a specified direction, and defined by

Ji ¼ 1

a

dNi

dt

Considering a small area da at any point x, y, z perpendicular to average velocity vi, in which vi is
constant, the volume occupied by the particles passing da in unit time will be vida. If the concentration
per unit volume is ci then the total amount of the substance is: Ni ¼ civida. The local flow, which the
amount of substance passing in a unit area per unit time, is Ji ¼ civi. Generally, these three quantities
Ji, ci and vi are the functions of the time and space coordinates. If the area da is not perpendicular to the
flow vector, we consider a unit vector i, perpendicular to da, whose direction will specify the direction
of the area

da ¼ i da

The scalar product vi,da gives the volume dV, which is multiplied by the local concentration ci to
find differential flow Ji,da which is the amount of the substance passing an area at any angle with the
velocity vector vi. For a volume enclosed by a surface area a, the total amount of species i leaving that
volume is

R
aJi,da. The divergence of the flow Ji is

V$Ji ¼ vJi;x
vx

þ vJi;y
vy

þ vJi;z
vz

Here Ji,x, Ji,y, and Ji,z are the Cartesian coordinates of the vector Ji. As the volume V and the
product Ji$da are scalars, the divergence is also a scalar quantity. A positive divergence means a source
of component i, while a negative divergence indicates a sink, and at points of V,Ji ¼ 0, there is no
accumulation and no removal of material. Transformation of the surface integral of a flow into a
volume integral of a divergence using the GausseOstrogradsky theorem isZ

V
V$JidV ¼

Z
a
Jida
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The divergence of the mass flow vector rv is used in the continuity equation

vr

vt
¼ �ðV$rvÞ

Similarly, the local equivalent of the law of conservation of mass for an individual component i is

vci
vt

¼ �ðV$JiÞ
The equation above cannot describe a flow process for a reacting component.
Another conserved property is the total energy, and in terms of local energy density e for each point

in the system, we have

ve

vt
¼ �ðV$JeÞ

where Je is the energy flow. The total entropy of a system is related to the local entropy density sv

S ¼
Z
V
svdV (3.56)

The total entropy changes with time as follows

dS

dt
¼
Z
V

vsv
vt

dV (3.57)

The entropy flow js, on the other hand, is the result of the exchange of entropy with the
surroundings

deS

dt
¼ �

Z
a
js$da ¼ �

Z
V
ðV$jsÞ dV (3.58)

An irreversible process causes the entropy production s in any local element of a system, and the
rate of total entropy production is

diS

dt
¼
Z
V
sdV (3.59)

Therefore, the total change in entropy dS
dt ¼ deS

dt þ diS
dt becomesZ

V

vsv
vt

dV ¼ �
Z
V
ðV$jsÞdV þ

Z
V
sdV (3.60)

Therefore, for any local change, an irreversible process in a continuous system is described as

vsv
vt

¼ �V$jS þ s (3.61)

The equation above is the expression for a nonconservative change in local entropy density and
allows the determination of the entropy production from the total change in entropy and the evaluation
of the dependence of s on flows and forces.

Stationary state flow processes resemble equilibria in their invariance with time; partial time
differentials of density, concentration, or temperature will vanish, although flows continue to occur in
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the system, and entropy is being produced. If the property is conserved, the divergence of the
corresponding flow must vanish, and hence the steady flow of a conserved quantity is constant and
source-free. At equilibrium, all the steady state flows become zero.

At stationary state, the local entropy density must remain constant because of the condition
vsv=vt ¼ 0. However, the divergence of entropy flow does not vanish, and we obtain

s ¼ V$js

The equation above indicates that in a stationary state, the entropy produced at any point of a
system must be removed by a flow of entropy at that point. In the state of equilibrium, all the flows
including the flow of entropy production vanish, and we obtain the necessary condition for
equilibrium as

s ¼ 0

3.9.2 THERMODYNAMIC FORCES
The thermodynamic “forces” Xi of the chemical potential gradient, temperature gradients, and the
chemical affinity cause the flows. The affinity A is

Aj ¼ �
Xn
i¼1

nijmi; ðj ¼ 1; 2;.; lÞ

where nij is the stoichiometric coefficient of the ith component in the jth reaction, n is the number of
components in the reaction, and l is the number of reactions. For thermodynamic vectorial forces, such
as a difference in chemical potential of component i, mi, proper spatial characteristics must be assigned
for the description of local processes. For this purpose, we consider all points of equal mi as the
potential surface. For the two neighboring equipotential surfaces with chemical potentials mi and
mi þ dmi, the change in mi with number of moles N is vmi=vN, which is the measure of the local density
of equipotential surfaces. At any point on the potential surface, we construct a perpendicular unit
vector with the direction corresponding to the direction of maximal change in mi. With the unit vectors
in the direction x, y, and z denoted by i, j, and k, respectively, the gradient of the field in Cartesian
coordinates is

Vmi ¼ i
vmi

vx
þ j

vmi

vy
þ k

vmi

vz

A thermodynamic driving force occurs when a difference in potential exists, and its direction is the
maximal decrease in mi. Consequently, at the point x, y, z, the local force X causing the flow of
component i is expressed by

Xi ¼ �Vmi

and for a single dimensional flow, it becomes

Xi ¼ �i
vmi

vx
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From the definition of the chemical potential, we have

�vmi

vx
¼ v

vx

��vG

vNi

�
¼ v

vNi

��vG

vx

�
(3.62)

where edG shows the free energy available to perform useful work, dW, and the differential of work
with distance, dW/dx, is a force. Therefore, Xi is a force per mole of component i, causing a flow in
the direction of the unit vector. The overall thermodynamic force that is the difference in chemical
potential for the transport of the substance between regions 1 and 2 in discontinuous systems is the
integral of Eq. (3.62)

Z2
1

Xidx ¼ �i

Z2
1

vmi

vx
dx ¼ i

�
mi;1 � mi;2

�
y� Dmi

Here, Dmi is a difference in potential, while Xi is a conventional force used in classical mechanics.
Electric potential j that causes a current at the point x, y, z lead to the definition of electric force Xe

Xe ¼ �Vj

where Xe is the force per unit charge, or the local intensity of the electric field.
When we consider the difference in electric potential between two points instead of local electric

forces, the quantity of electromotive force Dj is defined in a single direction by

Dj ¼ �i

Z2
1

dj

dx
dx ¼ iðj1 � j2Þ

Other types of forces of irreversible processes may be derived similarly.
In general, the flows and forces are complicated nonlinear functions of one another. However, we

can expand the nonlinear dependence of the flows Ji and the forces Xi in a Taylor series about the
equilibrium

�Ji ¼ Ji;eqðXj ¼ 0Þ þ
Xn
j¼1

 
vJi
vXj

!
eq

Xj þ 1

2!

Xn
j¼1

 
v2Ji

vX2
j

!
eq

X2
j þ.

�Xi ¼ Xi;eqðJk ¼ 0Þ þ
Xn
k¼1

�
vXi

vJk

�
eq

Jk þ 1

2!

Xn
k¼1

 
v2Xi

vJ2k

!
eq

J2k þ.

If we disregard the higher order terms, these expansions become linear relations, and we have the
general type of linear phenomenological equations for irreversible phenomena

Ji ¼
Xn
k¼1

LikXk
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Xi ¼
Xn
k¼1

KikJk ði; k ¼ 1; 2;.; nÞ

These equations show that any flow is caused by all the forces and any force is the result of all the
flows present in the system. The coefficients Lik and Kik are called the phenomenological coefficients.
The coefficients Lik are the conductance coefficients and Kik the resistance coefficients. The straight
coefficients with the same indices relate the conjugated forces and flows. The cross-coefficients with
i s k represent the coupling phenomena.

3.10 ONSAGER’S RELATIONS
Onsager’s reciprocal relations state that, provided a proper choice is made for the flows and forces,
the matrix of phenomenological coefficients is symmetrical. These relations are proved to be an
implication of the property of “microscopic reversibility,” which is the symmetry of all mechanical
equations of motion of individual particles with respect to time t. The Onsager reciprocal relations
are the results of the global gauge symmetries of the Lagrangian, which is related to the entropy of
the system considered. This means that the results in general are valid for an arbitrary process.

The cross-phenomenological conductance and resistance coefficients are defined as

Lik ¼
�
vJi
vXk

�
Xj

¼
�
Ji
Xk

�
Xj¼0

ðiskÞ

Kik ¼
�
vXi

vJk

�
Ji

¼
�
Xi

Jk

�
Ji¼0

ðiskÞ

The phenomenological coefficients are not a function of the thermodynamic forces and flows; on
the other hand, they can be functions of the parameters of the local state as well as the nature of a
substance. The values of Lik and Kik must satisfy the following conditions

Lii > 0 ði ¼ 1; 2;.; nÞ

LiiLkk >
1

4
ðLik þ LkiÞ2 ðisk; i; k ¼ 1; 2;.; nÞ

or

Kii > 0 ði ¼ 1; 2;.; nÞ

KiiKkk >
1

4
ðKik þ KkiÞ2 ðisk; i; k ¼ 1; 2;.; nÞ

The matrix of phenomenological coefficients Lki and Kki are related by K ¼ L�1 where L�1 is the
inverse of the matrix L. In a general matrix form in terms of the conductance Lij and resistance Kij

coefficients becomes

s ¼ XTLX ¼ JTKJ

The equation above suggests that the local rate of entropy production is a quadratic form in all
forces and in all flows.
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3.11 TRANSFORMATION OF FORCES AND FLOWS
The Onsager reciprocal relations remain valid when homogeneous relationships relate the flows to
each other. This enables to select the most suited description of flows and independent forces, if they
enable to write the rate of entropy production or the dissipation function as a sum of the products of
conjugate flows and forces.

3.11.1 TWO-FLOW SYSTEMS
For a two-flow system, we have the phenomenological equations in terms of the flows

J1 ¼ L11X1 þ L12X2

J2 ¼ L21X1 þ L22X2

From these relations, we can derive the independent forces

X1 ¼ L22
jLjJ1 �

L12
jLjJ2

X2 ¼ �L21
jLjJ1 þ

L11
jLjJ2

We can also write the phenomenological equations in terms of the forces

X1 ¼ K11J1 þ K12J2

X2 ¼ K21J1 þ K22J2

The following relations link the phenomenological coefficients of Lik to Kik

K11 ¼ L22
jLj; K12 ¼ �L12

jLj; K21 ¼ �L21
jLj; K22 ¼ L11

jLj (3.63)

where jLj is the determinant of the matrix: jLj ¼ L11L22 � ðL12Þ2 with Onsager’s relations.

EXAMPLE 3.2 RELATIONSHIPS BETWEEN THE CONDUCTANCE AND RESISTANCE
PHENOMENOLOGICAL COEFFICIENTS
For a three-flow system, derive the relationships between the conductance and resistance phenomenological coefficients.

Solution:

Consider the linear phenomenological equations relating forces to flows with resistance coefficients.

X1 ¼ K11J1 þ K12J2 þ K13J3

X2 ¼ K21J1 þ K22J2 þ K23J3

X3 ¼ K31J1 þ K32J2 þ K33J3
After applying the Onsager relations to the linear matrix solutions, we have

J1 ¼ L11X1 þ L12X2 þ L13X3

�J1 ¼
�
K2
23 � K22K33

�
D

X1 þ ðK12K33 � K23K13Þ
D

X2 þ ðK13K22 � K23K12Þ
D

X3
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J2 ¼ L21X1 þ L22X2 þ L23X3

�J2 ¼ ðK12K33 � K13K23Þ
D

X1 þ
�
K2
13 � K11K33

�
D

X2 þ ðK11K23 � K12K13Þ
D

X3

J3 ¼ L31X1 þ L32X2 þ L33X3

�J3 ¼ ðK13K22 � K12K23Þ
D

X1 þ ðK11K23 � K12K13Þ
D

X2 þ
�
K2
12 � K11K22

�
D

X3

Where

D ¼ �K2
13K22 þ 2K12K13K23 � K2

12K33 � K11K
2
23 þ K11K22K33

EXAMPLE 3.3 TRANSFORMATION OF PHENOMENOLOGICAL EQUATIONS: DEPENDENT
FLOWS
Transform the thermodynamic forces and flows when the forces are independent, while the flows are linearly dependent in

a two-flow system, 0 ¼ yJ1 þ J2.

Solution:

The local entropy production is: s ¼ J1X1 þ J2X2

Using the linear relation between the flows, 0 ¼ yJ1 þ J2, the local entropy production becomes

s ¼ J1X1 � yJ1X2 ¼ J1ðX1 � yX2Þ (a)

The linear phenomenological equations are

J1 ¼ L11X1 þ L12X2 (b)

J2 ¼ L21X1 þ L22X2 (c)

However, from Eq. (a), which is a novel linear relation, the modified phenomenological equation for J1 is

J1 ¼ L011X
0
1 (d)

where X0
1 ¼ X1 � yX2

Then, the second flow is: J2 ¼ �yJ1 ¼ �yL011ðX1 � yX2Þ
Using the linear relation between the flows in Eq. (b), we have

�yJ1 ¼ �yL11X1 � yL12X2 (e)

Subtracting Eq. (c) from Eq. (e) gives zero and we get two conditions

yL11 þ L21 ¼ 0/L21 ¼ �yL11 (f)

yL12 þ L22 ¼ 0/L12 ¼ �L22=y (g)

Substituting Eq. (g) into Eq. (b), we find: J1 ¼ L11X1 � L22

y X2

Comparing the equation above with Eq. (d) and Eq. (b), we have L011 ¼ L22

y2

From Eq. (f) and (g), we have

L12 ¼ �L22
y

¼ �y2L011
y

¼ �yL011 ¼ L21

The equation above shows that Onsager’s reciprocal relations are satisfied in the phenomenological equations

(Wisniewski et al., 1976).
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EXAMPLE 3.4 TRANSFORMATION OF PHENOMENOLOGICAL EQUATIONS: DEPENDENT
FORCES
Transform the thermodynamic forces and flows when the flows are independent, while the thermodynamic forces are lin-

early dependent in a two-flow system, 0 ¼ yX1 þ X2.

Solution:

The local entropy production is: s ¼ J1X1 þ J2X2

Using the linear relation between the thermodynamic forces, 0 ¼ yX1 þ X2, the local entropy production becomes

s ¼ J1X1 � yJ2X1 ¼ X1ðJ1 � yJ2Þ (a)

The linear phenomenological equations in terms of the resistance coefficients are

X1 ¼ K11J1 þ K12J2 (b)

X2 ¼ K21J1 þ K22J2 (c)

However, from Eq. (a), the modified phenomenological equation for the force X1 is

X1 ¼ K0J0 ¼ K0ðJ1 � yJ2Þ (d)
Then, the second thermodynamic force is

X2 ¼ �yK0ðJ1 � yJ2Þ (e)

Using the linear relation between the forces in Eqs. (b) and (c), we have

yX1 ¼ yK11J1 þ yK12J2 (f)

�yX1 ¼ K21J1 þ K22J2 (g)
Adding Eq. (g) from Eq. (f), we get

yK11 þ K21 ¼ 0/� K21

y
¼ K11 (h)

yK12 þ K22 ¼ 0/K12 ¼ �K22

y
(i)

Substituting Eq. (i) in Eq. (b), we find

X1 ¼ K11J1 � K22

y
J2 (k)

Comparing Eq. (k) with Eq. (d), we have

X1 ¼ K0J1 � yK0J2 ¼ K11J1 � K22

y
J2

K11 ¼ K22

y2
and K12 ¼ K21

These results show that Onsager’s relations are satisfied in Eqs. (b) and (c) since the dependency of the forces to the flows

are linear (Wisniewski et al., 1976).

EXAMPLE 3.5 TRANSFORMATION OF PHENOMENOLOGICAL EQUATIONS: DEPENDENT
FLOWS AND FORCES
Transform the phenomenological equations when the flows and forces are linearly dependent:

0 ¼ zJ1 þ J2 and 0 ¼ yX1 þ X2

Solution:

The local entropy production is: s ¼ J1X1 þ J2X2 ¼ J1X1 þ ð � zJ1Þð � yX1Þ ¼ J1X1ð1 þ zyÞ
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The linear phenomenological equations are

J1 ¼ L11X1 þ L12X2 ¼ L0X0 (a)

J2 ¼ L21X1 þ L22X2 (b)

where X0 is defined by

X0 ¼ ð1þ zyÞX1 ¼ ð1þ zyÞ
�
�X2

y

�
¼ �

�
1

y
þ z

�
X2 (c)

The phenomenological coefficient is

L0 ¼ L011 (d)
Using the linear flows and forces in Eqs. (a)e(c), we have

J1 ¼ L0ð1þ zyÞX1 (e)

J2 ¼ �zL0ð1þ zyÞX1 (f)
From Eqs. (a) and (b), we obtain

J1 ¼ ðL11 � yL12ÞX1 (g)

J2 ¼ ðL21 � yL22ÞX1 (h)

Comparing Eqs. (e) and (f) with Eqs. (g) and (h), we find

ðL11 � yL12ÞX1 ¼ L0ð1þ zyÞX1/ð1þ zyÞL0 ¼ L11 � yL12 (i)

ðL21 � yL22ÞX1 ¼ �L0zð1þ zyÞX1/� ð1þ zyÞL0z ¼ L21 � yL22 (k)

In a two-flow system, there are 2� of freedom in choosing the phenomenological coefficients. With the linear relations of

flows and forces, there is 1� of freedom that is L12 ¼ L21, and L22 is proportional to L0

L22 ¼ wL0

With the equation above, the relations in Eqs. (i) and (k) become

L21 � yL22 ¼ �L0zð1þ zyÞ
L21 � yðwL0Þ ¼ �L0zð1þ zyÞ
L21 ¼ �L0

�
zþ z2y

�þ ywL0

L12 ¼ L21 ¼ �L0
�
zþ z2y� yw

�
and

L11 � yL12 ¼ L0ð1þ zyÞ
L11 ¼ L0ð1þ zyÞ � yL0

�
zþ z2y� yw

�
L11 ¼ L0

�
1� z2y2 þ y2w

�
Since the local entropy production is positive if Lii > 0, L0 ¼ L011 > 0, and L11L22 � L212 > 0, the conditions L0 ¼ L011 > 0

and Lii > 0 restrict w to positive values, and we have

1� z2y2 þ y2w > 0/y2w > z2y2 � 1

w >
z2y2

y2
� 1

y2
/w > z2 � 1

y2

The inequality above leads to w > z2 > 0.

3.12 CHEMICAL REACTIONS
For an elementary step reaction, we may relate the flow Jr and the affinity A to the forward Jrf and
backward Jrb reaction rates as follows

Jr ¼ Jrf � Jrb
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A ¼ RT ln
Jrf
Jrb

If we solve the equations above together, we obtain the reaction (velocity) flow

Jr ¼ Jrf

	
1� e�A=RT



(3.64)

Close to the thermodynamic equilibrium, where A/RT << 1, we can expand Eq. (3.64) as

Jr ¼ Jrf;eq
A

RT
(3.65)

On the other hand, we have the following linear phenomenological equation for chemical reaction i

Jri ¼
Xl
j¼1

Lij
Aj

T

We can compare these linear phenomenological equations with Eq. (3.65) to obtain the
phenomenological coefficients

Lij ¼ Jrf;eq;ij
R

At equilibrium, we have Jrf;eq ¼ Jrb;eq.
For an overall reaction with l number of intermediate reactions, the linear phenomenological law is

valid, if every elementary reaction satisfies the condition A/RT << 1, and the intermediate reactions
are fast and hence a steady state is reached.

For a closed system, if the change of mole numbers dNk is due to irreversible chemical reactions,
the entropy production is

diS ¼ �1

T

X
mkdNk � 0

The rate of entropy production P is

P ¼ diS

dt
¼ �1

T

X
mk
dNk

dt
� 0

where mk is the chemical potential that can be related to measurable quantities, such as P, T, and No. In
terms of the affinity A, equation above becomes

diS

dt
¼
X 

~Ak

T

!
dεk
dt

� 0

For a reaction B / 2D, the affinity is A ¼ mB�2mD, ε is the extent of the reaction and dε/dt is the

velocity of the reaction. At thermodynamic equilibrium, the affinity ~A and the velocity of the reaction
vanish.

The rate of entropy production due to electrochemical reactions is

diS

dt
¼

~A

T

dε

dt
� 0

166 CHAPTER 3 FUNDAMENTALS OF NONEQUILIBRIUM THERMODYNAMICS



where ~A is the electrochemical affinity defined by

~Ai ¼ Ai þ ziFðj1 � j2Þ ¼ ~m1 � ~m2

Here zi is the electrovalence of ionic species i, F is the Faraday number, which is the electrical
charge associated with 1 g-ion of a species with an electrovalence of 1, and j1 is the electrical potential
at position 1. The term ~mi is the electrochemical potential of species i, and defined by

~mi ¼ mi þ ziFj

The level of electrical current is related to the extent of the electrochemical reaction by

I ¼ ziF
dε

dt
¼ ziFJr

3.13 HEAT CONDUCTION
The entropy production for a heat conduction process is

s ¼ Jq$V

�
1

T

�
¼ �Jq$

VT

T2
(3.66)

where Jq is the heat flow (or generalized flow) and Vð1=TÞ is the thermodynamic force Xq. Eq. (3.66)
identifies the forces and flows. The phenomenological equation and the Fourier equation for the heat
conduction is

Jq ¼ LqqXq ¼ �kVT

Therefore, we have

�Jq ¼ Lqq
T2

VT ¼ kVT

and

Lqq ¼ kT2

If the dissipation function J ¼ Ts is used to identify the thermodynamic forces, then the
phenomenological coefficient is

L0qq ¼ kT

EXAMPLE 3.6 ENTROPY PRODUCTION IN HEAT CONDUCTION
Consider one-dimensional heat conduction in an isotropic solid rod. The surface of the rod is insulated and the cross-

sectional area is constant (Fig. 3.1). Describe the entropy production and the dissipation function for the heat

conduction in an isotropic rod.

Solution:

The entropy change of the rod element is

dS ¼ qþ dq

T þ dT
� q

T
z

Tqþ Tdq� qT � qdT

T2
¼ dq

T
� qdT

T2
(a)
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where dq is the actual uptake of heat and dT is the actual increase in temperature. Comparing dS ¼ deS þ di Swith Eq.

(a), we find the entropy production term

diS ¼ �qdT

T2
> 0

The rate of entropy production is: P ¼ diS
dt ¼ �qdT

T2dt ¼ � _qdT
T2 > 0

Here, _q represents the heat flow rate. The rate of entropy production per unit volume is the entropy source strength

s ¼ � qdT

aT2dtdx
¼ �

�
Jq
T2

��
dT

dx

�
> 0

where a is the area, Jq is the heat flow Jq ¼ q
adt, and Xq ¼ � 1

T2
dT
dx is the thermodynamic force due to the finite temperature

difference Vð1=TÞ.
Three-dimensional heat conduction in an isotropic solid is

s ¼ Jq$V

�
1

T

�
¼ �Jq

T
$Vln T

In the equation above, Jq is the heat flow,Vð1=TÞ is the inverse temperature gradient representing the thermodynamic force

for heat conduction, and Jq=T ¼ Js is the entropy flow.

3.14 MASS DIFFUSION
The local entropy production for diffusion of several substances per unit volume is

s ¼ �
X
i

Ji$V
	mi
T



(3.67)

Based on the entropy production, linear phenomenological equations for an isothermal flow of
substance i become

Ji ¼ �
X
k

Lik
T
Vmk

It is clear from the GibbseDuhem equation that not all the forces 1
TVðmkÞ are independent. For

example, for a two-substance system at constant pressure and temperature, we have

0 ¼ c1Vm1 þ c2Vm2

FIGURE 3.1

Heat conduction in an isotropic rod.
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The condition for no volume flow corresponding to no change in volume due to diffusion is

0 ¼ J1V1 þ J2V2

where Vi is the partial molar volume for substance i. Therefore, for a two-substance system Eq. (3.67)
becomes

s ¼ �1

T

�
J1 � c1

c2
J2

�
T

$Vm1/ s ¼ �1

T

�
1þ V1c1

V2c2

�
T

J1$Vm1

where Vm1 ¼ ðvm1=vc1ÞVc1. Then, the linear phenomenological equation is

J1 ¼ �L11
T

�
1þ V1c1

V2c2

�
Vm1

Comparing this equation with Fick’s law J1 ¼ �D1VC1, we have

J1 ¼ �L11
T

�
1þ V1c1

V2c2

��
vm1

vc1

�
Vc1 ¼ �D1Vc1

Therefore, the diffusion coefficient is related to the phenomenological coefficient by

D1 ¼ L11
T

�
1þ V1c1

V2c2

��
vm1

vc1

�
For diffusion flow of substance 1 in a dilute solution, we have

D1 ¼ L11R

x1

since m1 ¼ moðP; TÞ þ RT lnðc1=cÞ ¼ moðP; TÞ þ RT lnðx1Þ, where c is the concentration of the
solution.
When a mass diffusion occurs in a closed system from higher chemical potential m2 to lower potential
m1, we have the entropy production expressed by

diS ¼ �
�
m2 � m1

T

�
dε � 0

where dε ¼ �dN1 ¼ dN2. Here the flow of mass from one region to another is accounted for by
the extent of reaction dε, although no real chemical reaction takes place. The rate of entropy
production is

P ¼ diS

dt
¼ �

�
m2 � m1

T

�
dε

dt
� 0

3.15 ENTROPY PRODUCTION IN AN ELECTRICAL CIRCUIT
In electrical circuits, electrical energy is converted into heat irreversibly in resistors and capacitors, and
entropy is produced. When there is an electrical field, the change of energy is

dU ¼ TdS� pdV þ
X
i

midNi þ
X
i

FzijidNi
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where F is the Faraday constant, and zi is the ion number. The product FzidNi represents the amount of
charge transferred. When we transfer the charge dI from a potential j1 to a potential j2, then the rate of
entropy production is

diS

dt
¼ �j2 � j1

T

X
i

Fzi
dNi

dt
¼ �j2 � j1

T

dI

dt
(3.68)

In the equation above, the difference (j2 � j1) is the voltage across the element, while dI/dt is the
electric current.
For a resistor, using the Ohm law V ¼ (j2 � j1) ¼ IR, where R is the resistance, the rate of entropy
production is

diS

dt
¼ VI

T
¼ RI2

T
> 0 (3.69)

In the equation above, RI2 is the Ohmic heat rate produced by a current through an element, such as
a resistor.

For a capacitor with capacitance C, the rate of entropy production is

diS

dt
¼ VCI

T
¼ VC

T

dI

dt
¼ �C

T
VC

dVC

dt
(3.70)

where dVC ¼ �dI
C is the voltage decrease when we transfer charge of dI. We can modify Eq. (3.70) as

follows

diS

dt
¼ �1

T

d

dt

�
CV2

C

2

�
¼ �1

T

d

dt

�
I2

2C

�

where the terms
�
CV2

C

�
2
� ¼ �I2�ð2CÞ� represent the electrostatic energy stored in a capacitor. Only

for an ideal capacitor, there is no entropy production and no energy dissipation.
For an inductance, the rate of entropy production is

diS

dt
¼ �1

T

d

dt

�
LI2

2

�
¼ �LI

T

dI

dt
¼ VI

T
� 0

where the energy stored in an inductance (in the magnetic field) is LI2/2. The voltage is V ¼ �LdI/dt.
The phenomenological equations for resistance, capacitance, and inductance are as follows

I ¼ LR
V

T
; I ¼ LC

V

T
; and I ¼ �LL

V

T

where LR, LC, and LL are the phenomenological coefficients, which may be related to resistance. Using
Ohm’s law, we have

1

R
¼ LR

T
; R ¼ T

LC
; and R ¼ T

LL
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EXAMPLE 3.7 ENERGY DISSIPATION IN A DIFFUSER
In heating and ventilation systems, diffusers that are diverging nozzles reduce the discharge velocity to enhance its mixing

into the surroundings. Steam enters a diffuser at 30 psia and 300�F, and exits as a saturated vapor at 300�F. The steam

enters at a velocity of 1467 ft/s, and leaves at 75 ft/s. The nozzle has an exit area of 0.5 ft2. Determine the rate of energy

dissipation when the environmental temperature is To ¼ 500 R.

Solution:

Assume that there are no work interactions, the potential energy effects are negligible, and the nozzle operates at steady

state.

State 1: Superheated steam: P1 ¼ 30 psia, T1 ¼ 760 R, H1 ¼ 1189.0 Btu/lb, S1 ¼ 1.7334 Btu/(lb R)

State 2: Saturated vapor: T1 ¼ 760 R, H2 ¼ 1179.0 Btu/lb, S2 ¼ 1.6351 Btu/(lb R), V2 ¼ 6.466 ft3/lb.

The energy balance for a nozzle at steady state conditions yields: D
	
H þ 1

2v
2


_ms ¼ _q

By estimating the steam flow rate, we can determine the heat loss from the nozzle:

_m ¼ 1

V2
A2v2 ¼ 1

6:466ðft3=lbÞ
�
0:5ft2

�ð75ft=sÞ ¼ 5.8 lb=s

Therefore, the heat loss is: _qout ¼ _m

�
H2 � H1 þ v22�v21

2

�

_qout ¼ 5:8

�
1179:7� 1189:0þ 752 � 14672

2

�
1 Btu=lb

25037 ft2=s2

��
¼ �302.55 Btu=s

The entropy balance contains the nozzle and its surroundings, and we have

_Sprod ¼
X

ð _mSÞout �
X

ð _mSÞin �
X _qi

Ti

_Sprod ¼ 5:8ð1:6351� 1:7334Þ � �302:55

500
¼ 0.03501 Btu=ðs RÞ

The energy dissipated is

_Eloss ¼ To _Sprod ¼ 500ð0:03501Þ ¼ 17.50 Btu=s

EXAMPLE 3.8 ENERGY DISSIPATION IN A COMPRESSOR
Air enters a compressor at 15 psia and 80�F, and exits at 45 psia and 300�F. The inlet air velocity is low, but increases to

250 ft/s at the outlet of the compressor. The power input to the compressor is 250 hp. The compressor is cooled at a rate of

30 Btu/s. Determine the rate of energy dissipation when the surroundings are at 540 R.

Solution:

Assume that the potential energy effects are negligible, and steady flow occurs in the compressor.

The properties of air can be obtained from Table E4 in Appendix E:

State 1: P1 ¼ 15 psia, T1 ¼ 540 R, H1 ¼ 129.06 Btu/lb, S1 ¼ 0.60,078 Btu/(lb R)

State 2: P2 ¼ 45 psia, T2 ¼ 760 R, H2 ¼ 182.08 Btu/lb, S2 ¼ 0.68,312 Btu/(lb R)

Using the energy balance, we can estimate the mass flow rate:

_W in þ _qout ¼ _m

�
H2 � H1 þ v22 � v21

2

�

ð250hpÞ
�
0:7068Btu=s

1hp

�
� 30Btu=s ¼ _m

�
182:08� 129:06þ 2502

2

�
1 Btu=lb

25037 ft2=s2

��

_m ¼ 2.7 lb=s

The entropy balance: _Sprod ¼P ð _mSÞout �
P ð _mSÞin �P _qi

Ti
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By considering the variable heat capacity, we have

D _S ¼ _m

�
S2 � S1 � R ln

P2

P1

�

D _S ¼ 2:7 lb=s

�
0:6831� 0:60078� ð0:06855Btu=lbÞ ln

�
45

15

��
¼ 0:019 Btu=ðs RÞ

_Sprod ¼ D _S� _qout
To

¼ 0:019��30

540
¼ 0.0745 Btu=ðs RÞ

The energy dissipated: _Eloss ¼ To _Sprod ¼ 540ð0:0745Þ ¼ 40.23 Btu=s

EXAMPLE 3.9 ENERGY DISSIPATION IN AN ADIABATIC MIXER
In a mixer, we mix hot water (stream 1) at 1 atm and 90�C adiabatically with cold water (stream 2) at 15�C. The hot water
flow rate is 60 kg/h. If the warm water (stream 3) leaves the mixer at 30�C, determine the rate of energy dissipation if the

surroundings are at 300 K.

Solution:

Assume that the kinetic and potential energy effects are negligible, and this is a steady process.

The properties of water from the steam tables in Appendix D, Tables D1 and D2:

Stream 1: Hot water: T1 ¼ 90�C, H1 ¼ 376.9 kJ/kg, S1 ¼ 1.1925 kJ/(kg K)

Stream 2: Cold water: T2 ¼ 15�C, H2 ¼ 62.94 kJ/kg, S2 ¼ 0.2243 kJ/(kg K)

Stream 3: Warm water: T3 ¼ 30�C, H3 ¼ 125.7 kJ/kg, S3 ¼ 0.4365 kJ/(kg K)

The mass, energy, and entropy balances for the adiabatic mixer are.

Mass balance: _mout ¼ _min

Energy balance: _Eout ¼ _Ein/ _m1H1 þ _m2H2 ¼ _m3H3

Entropy balance: _Sprod ¼P ð _mSÞout �
P ð _mSÞin/ _Sprod ¼ _m3S3 � ð _m1S1 þ _m2S2Þ

Combining the mass and energy balances, we estimate the flow rate of the cold water

_m1H1 þ _m2H2 ¼ ð _m1 þ _m2ÞH3

_m2 ¼ _m1

�
H3 � H1

H2 � H3

�
¼ 60kg=h

�
125.7� 376.9

62.94� 125.7

�
¼ 240.153kg=h

The mass flow rate of the warm water is: _m3 ¼ _m1 þ _m2 ¼ 60.0 þ 240.153 ¼ 300.153 kg=h

The rate of entropy production for this adiabatic mixing process:

_Sprod ¼ _m3S3 � ð _m1S1 þ _m2S2Þ
_Sprod ¼ 300:153ð0.4365Þ � 60.0ð1.1925Þ � 240.153ð0.2243Þ ¼ 5:6 kJ=ðh KÞ

The energy dissipated because of mixing: _Eloss ¼ To _Sprod ¼ 300ð5:6Þ ¼ 1680:0kJ=h ¼ 0:466kW

EXAMPLE 3.10 ENERGY DISSIPATION IN A MIXER
In a mixer, we mix a saturated steam (stream 1) at 110�C with a superheated steam (stream 2) at 1000 kPa and 300�C. The
saturated steam enters the mixer at a flow rate 1.5 kg/s. The product mixture (stream 3) from the mixer is at 350 kPa and

240�C. The mixer loses heat at a rate 2 kW. Determine the rate of energy dissipation if the surroundings are at 300 K.

Solution:

Assume that the kinetic and potential energy effects are negligible, this is a steady process, and there are no work

interactions.

The properties of steam from the steam tables in Appendix D, Tables D1 and D2:

Stream 1:Saturated steam: T1 ¼ 110�C, H1 ¼ 2691.3 kJ/kg, S1 ¼ 7.2388 kJ/(kg K)

Stream 2: Superheated steam: P2 ¼ 1000 kPa, T2 ¼ 300�C, H2 ¼ 3052.1 kJ/kg, S2 ¼ 7.1251 kJ/(kg K)
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Stream 3: Superheated steam: P3 ¼ 350 kPa, T3 ¼ 240�C, H3 ¼ 2945.7 kJ/kg, S3 ¼ 7.4045 kJ/(kg K)

The mass, energy, and entropy balances for the mixer at steady state are when Ws ¼ 0:

Mass balance : _mout ¼ _min/ _m1 þ _m2 ¼ _m3

Energy balance :
X
i

ðH _mÞi;out �
X
i

ðH _mÞi;in ¼ _qþ _Ws/ _m3H3 � ð _m1H1 þ _m2H2Þ ¼ _qout

Entropy balance : _Sprod ¼ _m3S3 � ð _m1S1 þ _m2S2Þ � _qout
To

Combining the mass and energy balances we estimate the flow rate of the super heated steam

_qout ¼ ð _m1 þ _m2ÞH3 � ð _m1H1 þ _m2H2Þ

_m2 ¼ _qout � _m1ðH3 � H1Þ
H3 � H2

¼ �2 kW� 1.5 kg=sð2945.7� 2691.3ÞkJ=kg
ð2945.7� 3052.1Þ ¼ 3.56 kg=s

The mass flow rate of the warm water is: _m3 ¼ _m1 þ _m2 ¼ 1.5 þ 3.56 ¼ 5.06 kg/h.

The rate of entropy production is

_Sprod ¼ _m3S3 � ð _m1S1 þ _m2S2Þ � _qout
To

_Sprod ¼ 5:105 kg=sð7.4045Þ � 1.5 kg=sð7.2388Þ � 3.605 kg=sð7.1251Þ � �2 kJ=s

300
¼ 1:26 kJ=ðs KÞ

The energy dissipated because of mixing: _Eloss ¼ To _Sprod ¼ 300ð1:26Þ ¼ 378.0kW

EXAMPLE 3.11 ENERGY DISSIPATION IN A TURBINE
A superheated steam (stream 1) expands in a turbine from 5000 kPa to 325�C to 150 kPa and 200�C. The steam flow rate is

10.5 kg/s. If the turbine generates 1.1 MW of power, determine the rate of energy dissipation if the surroundings are at

300 K.

Solution:

Assume that the kinetic and potential energy effects are negligible, this is a steady process.

The properties of steam from the steam tables in Appendix D, Tables D1 and D2:

Stream 1: Superheated steam: P1 ¼ 5000 kPa, T1 ¼ 325�C, H1 ¼ 3001.8 kJ/kg, S1 ¼ 6.3408 kJ/(kg K)

Stream 2: Superheated steam: P2 ¼ 150 kPa, T2 ¼ 200�C, H2 ¼ 2872.9 kJ/kg, S2 ¼ 7.6439 kJ/(kg K)

Ws ¼ � 1100 kW, _ms ¼ 10.5 kg/s.

The mass, energy, and entropy balances are:

Mass balance : _mout ¼ _min ¼ _ms

Energy balance
X
i

ðH _mÞi;out �
X
i

ðH _mÞi;in ¼ _qþ _Ws

Entropy balance : _Sprod ¼ _msðS2 � S1Þ � _qout
To

We estimate the heat loss from the energy balance

_qout ¼ � _Wout þ _msðH2 � H1Þ ¼ 1100 kJ=sþ 10:5 kg=sð2872.9� 3001.8Þ ¼ �253.45 kJ=s

And the entropy production from the entropy balance is

_Sprod ¼ _msðS2 � S1Þ � _qout
To

¼ 10:5 kg=sð7.6439� 6.3408Þ � �253.45

300
¼ 14.53 kW=K

The amount of energy dissipated becomes:

_Eloss ¼ To _Sprod ¼ 300ð14.53Þ ¼ 4359.0 kW
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EXAMPLE 3.12 GIBBS ENERGY AND DISTANCE FROM GLOBAL EQUILIBRIUM
Discuss the effect of the distance from global equilibrium for a chemical reaction system: R ¼ P.

Solution:

For the chemical reaction considered, with the concentrations of [P] and [R], we have

K ¼ ½P�eq
½R�eq

ðat chemical equilibriumÞ

Q ¼ ½P�
½R� ðat nonequilibriumÞ

The displacement from equilibrium may be defined by: b ¼ Q
K

The Gibbs free energy change is: DG ¼ �RT ln
	
1
b



As Fig. 3.2 displays, the absolute values of DG increase as the values of b move further from unity. For example, when

b ¼ Q/K¼ 10, thenDG ¼ 5743.1 J/mol. The value ofDG is at a minimum at b ¼ 1 orK ¼ Q, corresponding to the chemical

equilibrium. If the values of b < 1, then DG< 0, and such reactions occur spontaneously when necessary mechanisms exist.

3.16 VALIDITY OF LINEAR PHENOMENOLOGICAL EQUATIONS
If a system is not far from global equilibrium, linear phenomenological equations represent the
transport and rate processes involving small thermodynamic driving forces. Consider a simple
transport process of heat conduction. The rate of entropy production is

s ¼ Jq

�
� 1

T2

dT

dx

�
> 0

The corresponding linear relation between the heat flow and the thermodynamic force is

Jq ¼ �Lqq
T2

�
dT

dx

�
(3.71)
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FIGURE 3.2

Distance from global equilibrium in a chemical reaction system: R ¼ P.
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The equation above is identical to Fourier’s law of heat conduction, k ¼ Lqq/T
2. The validity of

Eq. (3.71) is the same as the validity of Fourier’s law, and the equation is valid when the relative
variation of temperature is small within the mean free path distance l in the case of gases

l

T

vT

vx
<< 1

Since this condition is satisfied for most systems, the linear phenomenological equations are
satisfactory approximations for transport processes.

For an elementary chemical reaction, the local entropy production and the linear phenomenological
equation are

s ¼ A

T
Jr > 0; Jr ¼ Lrr

A

T

Considering a homogeneous chemical reaction S ¼ P, the corresponding affinity is

A ¼ mS � mP

For a mixture of perfect gases, the chemical potential is m ¼ mo þ RT ln c. We can relate the
chemical potentials to the chemical equilibrium constant and the affinity by

RT ln KðTÞ ¼ �
X
i

nim
o
i ðTÞ

A ¼ �
X
i

nim
o
i � RT

X
i

niln ci ¼ RT ln
KðTÞ
ðcP=cSÞ

From the kinetic expression, we have

Jr ¼ Jrf � Jrb ¼ kfcS � kbcP ¼ kfcS

�
1� 1

K

cP
cS

�

where the indices f and b refer to forward and backward reactions.

Jr ¼ Jrf

�
1� exp

�
� A

RT

�
(3.72)

The equation above is a general and nonlinear relation between reaction flow and affinity. However,
when the reaction is close to equilibrium, we have���� ART

���� << 1 (3.73)

When this condition is satisfied, we can expand the exponential Eq. (3.73) and it becomes

Jr ¼ Jrf;eq
R

A

T
(3.74)

Comparing Eq. (3.73) with Eq. (3.74), we have

Lrr ¼ Jrf;eq
R
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Since the condition in Eq. (3.73) is highly restrictive, the linear laws for chemical reactions are not
always satisfactory.

3.17 CURIEePRIGOGINE PRINCIPLE
According to the CurieePrigogine principle, vector and scalar quantities interact only in an aniso-
tropic medium. This principle as originally stated by Curie in 1908 is “quantities whose tensorial
characters differ by an odd number of ranks cannot interact in an isotropic medium.” Consider a flow Ji
with tensorial rank m. The value of m is zero for a scalar, unity for a vector, and two for a dyadic. If a
conjugate force Xj also has the same tensorial rank m, than the coefficient Lij is a scalar, and is
consistent with the isotropic character of the system. The coefficients Lij are determined by the
isotropic medium; they need not vanish, and hence the flow Ji and the force Xj can interact or couple. If
a force Xj has a tensorial rank different from m by an even integer k, then Lij has a tensor at rank k. In
this case, Lij Xj is a tensor product. Since a tensor coefficient Lij of even rank is also consistent with the
isotropic character of the fluid system, the Lij is not zero, and hence Ji and Xj can interact. However, for
a force Xj whose tensorial rank differs from m by an odd integer k�, Lij has a tensorial rank of k�.
A tensor coefficient Lij of odd rank implies an anisotropic character for the system. Consequently, such
a coefficient vanishes for an isotropic system, and Ji and Xj do not interact. For example, if k� is unity,
then Lij would be a vector.

3.18 TIME VARIATION OF ENTROPY PRODUCTION
The rate of entropy production inside a given system of volume V is

P ¼
Z
V
sdV ¼

Z
V

Xn
i¼1

JiXidV

The equation above shows the volumetric rate of entropy production. Both the flows and the forces
may change with time, while they remain constant at the system boundaries at stationary state only.
The time variation of P is

dP

dt
¼
Z
V

 Xn
i

Ji
dXi

dt

!
dV þ

Z
V

Xn
i

�
Xi
dJi
dt

�
dV ¼ dXP

dt
þ dJP

dt
(3.75)

The first term in Eq. (3.75) represents the variation of the rate of entropy production in terms of the
variation of thermodynamic force

dXP

dt
¼
Z
V

vXs

vt
dV ¼

Z
V

Xn
i

Ji
dXi

dt
dV � 0

The second term in Eq. (3.75) represents the time variation of the flow

dJP

dt
¼
Z
V

vJs

dt
dV ¼

Z
V

Xn
i

Xi
dJi
dt

dV (3.76)
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There is no definite sign for Eq. (3.76) in general. However, when the generalized flows are
expressed by linear phenomenological equations with constant coefficients obeying to the Onsager
relations

Ji ¼
Xn
k¼1

LikXk

then Eq. (3.76) and the Onsager relations (Lik ¼ Lki) yield

dJP

dt
¼
Z
V

Xn
i

�
Xi
dJi
dt

�
dV ¼

Z
V

Xn
i;k¼1

ðLikXiÞ vXk

vt
dV ¼

Z
V

Xn
k¼1

�
Jk
vXk

vt

�
dV ¼ dXP

dt
¼ 1

2

dP

dt
� 0

(3.77)

Therefore, from Eqs. (3.75) and (3.77), we have

dP

dt
¼ 2

dXP

dt
¼ 2

dJP

dt
� 0

At stationary state, the boundary conditions are time independent, and the rate of entropy
production for linear phenomenological laws is at a minimum, leading to minimum energy dissipation.
From Eq. (3.77), we have

vXs

vt
¼ vJs

dt
� 0

EXAMPLE 3.13 ENTROPY PRODUCTION AND THE CHANGE OF THE RATE OF ENTROPY
PRODUCTION WITH TIME IN HEAT CONDUCTION
For heat conduction in an isotropic medium (Fig. 3.1), derive a relationship for the rate of entropy production, the dissipation

function, and the rate of entropy production change with time.

Solution:

The entropy source strength s is: s ¼ Jq$V
	
1
T



¼ �Jq

T $Vln T

Hence, the phenomenological equation for heat conduction is: Jq ¼ LqqV
	
1
T



and we have Lqq ¼ kT2

The rate of entropy production is obtained from the local value of entropy production s

P ¼
Z
V
sdV ¼

Z
V
Jq$V

�
1

T

�
dV ¼ Lqq

Z
V

�
V

�
1

T

�2
dV � 0

The dissipation function for a reference temperature of To is

J ¼ To

Z
V
sdV ¼ To

Z
V
Jq$V

�
1

T

�
dV ¼ TokT

2

Z
V

�
V

�
1

T

�2
dV � 0

The time variation of the rate of entropy production with respect to the variation of the thermodynamic force (dxP) is

dXP

dt
¼
Z
V
Jq$

v

vt

�
V

�
1

T

�
dV ¼

Z
A

�
v

dt

�
1

T

�
Jq,dA�

Z
V

�
v

vt

�
1

T

�
ðV$JqÞdV (a)

where the surface integral is zero, as the temperature does not change with time.

The divergence of the heat flow is obtained using the first law of thermodynamics

dU ¼ dq� pdV
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For a solid dV ¼ 0, and we have dU ¼ CvdT , so therefore

�V$Jq ¼ r
dq

dt
¼ r

vU

dt
¼ rCv

vT

dt
(b)

Combining Eqs. (a) and (b) and assuming constant phenomenological coefficient for small temperature gradients and for

Cv > 0, we get

dP

dt
¼ 2

dXP

dt
¼ �2

Z
V

rCv

T2

�
vT

vt

�2

dV � 0

This shows that the rate of entropy production decreases with time because of heat flow in an isotropic solid, and a min-

imum is reached in an equilibrium state.

3.19 MINIMUM ENTROPY PRODUCTION
The entropy production rate is

P ¼
Z
V
sdV ¼

Z
V

Xn
i¼1

JiXidV ¼
Z
V

Xn
i;k¼1

LikXkXidV

The value of P will be extremal if its variation is equal to zero

dP ¼ d

Z
V

Xn
i;k¼1

LikXkXidV ¼ 0 (3.78)

The variation considered in the equation above may be subject to various constraints. For example,
the flows Ji may vary when the forces Xi remain constant. It is also possible that the thermodynamic
force may change while the flow remains the same, or they both may change.

For a set of linear phenomenological equations, consider the following potentials

j ¼ 1

2

Xn
i;k

LikXkXi � 0; f ¼ 1

2

Xn
i;k

KikJiJk � 0 ði; k ¼ 1; 2;.; nÞ

These potentials have the following properties

vj

vXi
¼ 1

2

Xn
k

LikXk ¼ Ji;
vf

vJi
¼ 1

2

Xn
k

KikJk ¼ Xi (3.79)

and

v2j

vXivXk
¼ vJi

vXk
¼ Lik ¼ Lki ¼ vJk

vXi
¼ v2j

vXkvXi

v2f

vJivJk
¼ vXi

vJk
¼ Kik ¼ Kki ¼ vXk

vJi
¼ v2f

vJkvJi

(3.80)

Eqs. (3.77) and (3.78) indicate that the first derivatives of the potentials represent linear
phenomenological equations, while the second derivatives are the Onsager reciprocal relations.
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For an elementary volume, minimum entropy productions under various constraints are

dXi ¼ 0; dJis0; dðs� fÞXi
¼ 0

dXis0; dJi ¼ 0; dðs� jÞJi ¼ 0

dXis0; dJis0; d½s� ðjþ fÞ� ¼ 0

For the whole system under consideration, we have

dXi ¼ 0; dJis0; d

Z
V
ðs� fÞXi

dV ¼ 0

dXis0; dJi ¼ 0; d

Z
V
ðs� jÞJidV ¼ 0

dXis0; dJis0; d

Z
V
½s� ðjþ fÞ�dV ¼ 0

(3.81)

The principle of minimum entropy production in nonequilibrium thermodynamics is restricted to
linear phenomenological equations obeying the Onsager relations. In equilibrium thermodynamics,
systems tend to maximize the entropy or minimize the free energy.

In a general manner, if a system has n independent forces (X1, X2,., Xn), and j of them are held
constant (X1, X2, ., Xj ¼ constant), then the flows with Jjþ1, Jjþ2,., Jn disappear at the stationary
state with minimum entropy represented by

v

vXk

�
diS

dt

�
¼ 0 ðk ¼ jþ 1;.; nÞ (3.82)

Since (diS/dt > 0), the extremum in Eq. (3.82) is a minimum. Such a state is called a stationary state of
jth order.

EXAMPLE 3.14 MINIMUM ENTROPY PRODUCTION IN A TWO-FLOW SYSTEM
Determine the conditions for minimum entropy production for a two-flow system.

Solution:

If the linear phenomenological equations hold for a two-flow coupled system

J1 ¼ L11X1 þ L12X2; J2 ¼ L21X1 þ L22X2

we can express the entropy production by the conductance coefficients Lij

s ¼ J1X1 þ J2X2 ¼ L11X
2
1 þ L22X

2
2 þ ðL12 þ L21ÞX1X2

The equation yields a parabolic-like change of dissipation with respect to forces X1 and X2, as seen in Fig. 3.3. The system

tends to minimize the entropy and eventually reaches zero entropy production if there are no restrictions on the forces. On

the other hand, if we externally fix the value of one of the forces, for example, X2 ¼ X20, then the system will tend toward

the stationary state characterized by the minimum entropy production at X2 ¼ X20. The system will move along the

parabola of Fig. 3.3 and stop at point s0. At the minimum, the derivative of s with respect to X2 is zero

ds

dX2
¼ 2L22X2 þ ðL12 þ L21ÞX1 ¼ 0 (a)

If the Onsager relations are valid, L12 ¼ L21, and then Eq. (a) becomes

0 ¼ 2ðL22X2 þ L12X1Þ ¼ 2J2 ¼ 0
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since J2 is the flow given by the phenomenological equations. Therefore, a stationary point with respect to mass flow

characterizes the state of minimum entropy production, and minimum energy dissipation (Kondepudi and Prigogine, 2015).

EXAMPLE 3.15 MINIMUM ENTROPY PRODUCTION IN AN ELEMENTARY CHEMICAL
REACTION SYSTEM
Consider a monomolecular reaction, for example, the following isomerization reaction:

R4
1

X4
2

B
In this open reaction system, the chemical potentials of reactant R and product B are maintained at a fixed value by an

inflow of reactant R and an outflow of product B. The concentration of intermediate X is maintained at a nonequilibrium

value, while the temperature is kept constant by the reaction exchanging heat with the environment. Determine the

condition for minimum entropy production.

Solution:

The entropy production per unit volume is

s ¼ A1

T
Jr1 þ A2

T
Jr2 � 0 (a)

Where A1 and A2 are the affinities for reactions 1 and 2. The linear reaction flows with vanishing cross-coefficients are

Jr1 ¼ L11
A1

T
; Jr2 ¼ L22

A2

T
(b)

As the chemical potentials mR and mB are fixed by the flow conditions, we have a constant total affinity A

X2X2o

σo

σ

X1

FIGURE 3.3

Representation of entropy production in terms of the forces in a two-flow system.
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A ¼ ðmR � mXÞ þ ðmX � mBÞ ¼ mR � mB ¼ A1 þ A2 (c)

At the stationary state, we have Jr1 ¼ Jr2
After inserting Eq. (c) into Eqs. (a) and (b), we get

s ¼ A1

T
Jr1 þ ðA� A1Þ

T
Jr2 � 0 (d)

Jr1 ¼ L11
A1

T
; Jr2 ¼ L22

A� A1

T
(e)

After combining Eqs. (d) and (e), we get

sðA1Þ ¼ L11
A2
1

T2
þ L22

ðA� A1Þ2
T2

The entropy production is at a minimum with respect to the affinity of reaction 1

vsðA1Þ
vA1

¼ L11
2A1

T2
� L22

2ðA� A1Þ
T2

¼ 0

Therefore, we have

L11
A1

T
� L22

A2

T
¼ Jr1 � Jr2 ¼ 0

The equation above proves that with the linear reaction flows, the entropy production is minimized at nonequilibrium

stationary state where the reaction velocities are equal to each other Jr1 ¼ Jr2.

EXAMPLE 3.16 MINIMUM ENERGY DISSIPATION IN HEAT CONDUCTION
Use the minimum entropy production principle to derive the relation for nonstationary heat conduction in an isotropic

solid rod.

Solution:

For an isotropic rod, we have

r
vs

vt
¼ �V$Js þ s ðentropy balanceÞ

r
vs

vt
¼ r

T

vu

vt
¼ rCv

1

T

vT

vt
where Js ¼ Jq

T . From Eq. (3.78), we have

dXis0; dJi ¼ 0; d

Z
V
ðs� jÞJidV ¼ 0

where

j ¼ Lqq
2

�
V

�
1

T

��2

With the GausseOstrogradsky theorem, we have

d

Z
V

�
r
vs

vt
� j

�
Ji

dV þ d

Z
a
Js$da ¼ 0 (a)

For the isotropic rod with constant temperatures at the boundaries, Eq. (a) yields

d

Z
V

�
rCv

T

vT

vt
� Lqq

2

�
V

�
1

T

�2�
dV ¼ 0 (b)

By using the absolute inverse temperature as the variable subject to change, Eq. (b) becomesZ
V

��
rCv

T

vT

vt
þ V$

�
LqqV

�
1

T

��
d

�
1

T

��
dV ¼ 0
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This variational equation based on Eq. (3.78) is equivalent to a differential heat conduction equation in the following form

rCv
vT

vt
¼ �V$

�
LqqV

�
1

T

�
¼ V$

�
Lqq
T2

VT

�

The Lagrangian of the variational problem is

Lq ¼ rCv

T

vT

vt
� Lqq

2

�
V

�
1

T

��2

A Euler-Lagrange equation for the variational problem of d
R
VLqdV may be obtained by considering the differential heat

conduction equation, and we have

vLq

vð1=TÞ �
X3
i¼1

v

vxi

vLq

v

�
vð1=TÞ
vxi

 ¼ 0

EXAMPLE 3.17 MINIMUM ENTROPY PRODUCTION IN ELECTRICAL CIRCUITS
Determine the conditions that minimize the entropy generation in electrical circuits with n elements connected in series.

Assume that the voltage drop across the circuit is kept constant.

Solution:

The entropy production is: diSdt ¼ V
T I

where V is the voltage across the element, (j2 � j1), and I is the current passing through the element. The phenomeno-

logical law is

Ij ¼ Ljj
Vj

T
(a)

Since the voltage drop across the circuit is kept constant, we have

V ¼
Xn
j

Vj (b)

The total entropy production for the n circuit elements is

P ¼ diS

dt
¼ V1

T
I1 þ V2

T
I2 þ.þ Vn

T
In (c)

After combining Eqs. (a)e(c), we get

P ¼ diS

dt
¼ L11

V2
1

T2
þ L22

V2
2

T2
þ.þ Lnn

" Pn�1

j
ðV � VjÞ

#2

T2

To minimize the rate of entropy production, we use vP=vVj with n�1 independent values of Vj, which leads to

I1 ¼ I2 ¼ . ¼ In

Therefore, in a circuit element, the entropy production is minimized if the current through the n elements is the same. In an

electrical circuit, the relaxation to the stationary state is very fast, and nonuniform values of I are not observed.
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PROBLEMS

3.1 Air enters a nozzle at 400 K and 60 m/s and leaves the nozzle at a velocity of 250 m/s. The air
inlet and exit pressures are 300 and 100 kPa, respectively. If the nozzle loses 2.2 kJ/kg,
determine the total entropy change if the surroundings are at 290 K.

3.2 Carbon dioxide enters a nozzle at 300 K and 10 m/s and leaves the nozzle at a velocity of
200 m/s. The inlet and exit pressures are 400 and 100 kPa, respectively. If the nozzle loses
3.0 kJ/kg, determine the total entropy change if the surroundings are at 290 K.

3.3 Air enters a diffuser at 280 K, 90 kPa, and 200 m/s and leaves the nozzle at a velocity of 80 m/
s. The air exit temperature is 295 K. The air flow rate is 2.5 kg/s. Determine the total entropy
change if the surroundings are at 290 K and the diffuser is adiabatic.

3.4 Steam enters a nozzle at 250 psia, 750�F, and 30 ft/s and leaves the nozzle at a velocity of
650 ft/s. The mass flow rate is 10 lbm/s. The steam leaves the nozzle at 180 psia. If the nozzle is
adiabatic, determine the total entropy change if the surroundings are at 490 R.

3.5 Steam enters a nozzle at 20 psia, 700�F, and 10 ft/s and leaves the nozzle at a velocity of 500 ft/s.
The mass flow rate is 8 lbm/s. The steam leaves the nozzle at 180 psia. The heat loss from the
nozzle is 1.6 Btu/lbm. Determine the total entropy change if the surroundings are at 490 R.

3.6 A steam enters a nozzle (diffuser) at 500 kPa and 220�C, and exits at 400 kPa and 175�C. The
steam enters at a velocity of 200 m/s, and leaves at 50 m/s. The nozzle has an exit area of
0.2 m2. Determine the rate of energy dissipation when the environmental temperature is
To ¼ 300 K.

3.7 A steam enters a nozzle at 4000 kPa and 425�Cwith a velocity of 50 m/s. It exits at 286.18 m/s.
The nozzle is adiabatic and has an inlet area of 0.005 m2. Determine the rate of energy
dissipation if the surroundings are at To ¼ 300 K.

3.8 A steam enters a nozzle at 3200 kPa and 300�Cwith a velocity of 20 m/s. It exits at 274.95 m/s.
The nozzle is adiabatic and has an inlet area of 0.01 m2. Determine the rate of energy
dissipation if the surroundings are at To ¼ 300 K.

3.9
a. At steady state, a 4-kW compressor is compressing air from 100 kPa to 300 K to 500 kPa

and 450 K. The airflow rate is 0.02 kg/s. Estimate the rate of entropy change.
b. If the compression takes place isothermally by remowing heat to the surroundings, estimate

the rate of entropy change of air if the surroundings are at 290 K.
3.10

a. At steady state, a 10-kW compressor is compressing air from 100 kPa to 300 K to 1500 kPa
and 400 K. The airflow rate is 0.3 kg/s. Estimate the rate of entropy change.

b. If the compression takes place isothermally by remowing heat to the surroundings, estimate
the rate of entropy change of air if the surroundings are at 290 K.

3.11 Derive the following isentropic relation for ideal gases with constant specific heats.

T2
T1

¼
�
P2

P1

�ðg�1Þ=g

where g is the ratio of heat capacities at constant pressure to heat capacity at constant volume.
3.12 Refrigerant tetrafluoroethane (HFC-134a) enters the coils of the evaporator of a refrigerator as

a saturated vapor liquid mixture at 240 kPa. The refrigerant absorbs 100 kJ of heat from the
interior of the refrigerator maintained at 273.15 K, and leaves as saturated vapor at 240 kPa.
Estimate the total entropy change.
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3.13 Refrigerant tetrafluoroethane (HFC-134a) enters the coils of the evaporator of a refrigerator as
a saturated vapor liquid mixture at 200 kPa. The refrigerant absorbs 85 kJ of heat from the
interior of the refrigerator maintained at 280.15 K and leaves as saturated vapor at 250 kPa.
Estimate the total entropy change.

3.14 Methanegas is compressed froman initial state at 100 kPa, 280Kand10m3 to 600 kPa and 400 K.
The compression process is polytropic (PVa ¼ constant). The average heat capacity of methane
is Cp,av ¼ 40.57 J/(mol K). Estimate the total entropy change if the surroundings are at 300 K.

3.15 Hydrogengas is compressed froman initial state at 100kPa, 300Kand5m3 to 300 kPa and 370 K.
The compression process is polytropic (PVa¼ constant). The average heat capacity of hydrogen
is Cp,av ¼ 29.1 J/(mol K). Estimate the total entropy change if the surroundings are at 290 K.

3.16 A compressor receives air at 15 psia and 80�F. The air exits at 40 psia and 300�F. At the inlet
the air velocity is low but increases to 250 ft/s at the outlet of the compressor. The power input
to the compressor is 350 hP. The compressor is cooled at a rate of 200 Btu/s. Determine the rate
of energy dissipation when the surroundings are at 540 R.

3.17 In a mixer, we mix a hot water at 1 atm and 80�C adiabatically with a cold-water stream at
25�C. The flow rate of the cold water is 20 kg/h. If the product leaves the mixer at 50�C,
determine the rate of energy dissipation if the surroundings are at 295 K.

3.18 In a mixer, we mix a hot water at 1 atm and 86�C adiabatically with cold-water stream at 25�C.
The hot water flow rate is 60 kg/h. If the warm water leaves the mixer at 35�C, determine the
rate of energy dissipation if the surroundings are at 300 K.

3.19 In a mixer, we mix liquid water at 1 atm and 25�C with a superheated steam at 325 kPa and
200�C. The liquid water enters the mixer at a flow rate of 70 kg/h. The product mixture from
the mixer is at 1 atm and 55�C. The mixer loses heat at a rate of 3000 kJ/h. Determine the rate
of energy dissipation if the surroundings are at 300 K.

3.20 In a mixer, we mix liquid water at 1 atm and 20�C with a superheated steam at 1350 kPa and
300�C. The liquid water enters the mixer at a flow rate 70 kg/h. The product mixture from the
mixer is at 1 atm and 55�C. The mixer loses heat at a rate of 1000 kJ/h. Determine the rate of
energy dissipation if the surroundings are at 290 K.

3.21 Steam expands in a turbine from 6600 kPa to 350�C to a saturated vapor at 1 atm. The steam
flow rate is 9.55 kg/s. If the turbine generates a power of 1.2 MW, determine the rate of energy
dissipation if the surroundings are at 298.15 K.

3.22 Steam expands in a turbine from 8000 kPa to 400�C to a saturated vapor at 1 atm. The steam
flow rate is 12.8 kg/s. If the turbine generates a power of 1.5 MW, determine the rate of energy
dissipation if the surroundings are at 298.15 K.

3.23 Derive the relationships between the conductance type of phenomenological coefficients Lik
and the resistance type of phenomenological coefficients Kij in a three-flow system.

3.24 Consider a monomolecular reaction in Example 3.9, and determine the condition for minimum
entropy production when the rate of entropy production is expressed in terms of the
concentration. In this open reaction system, the chemical potentials of reactant R and the
product B are maintained at a fixed value by an inflow of reactant R and an outflow of product
B. The concentration of intermediate X is maintained at a nonequilibrium value, while the
temperature is kept constant by exchanging the heat of reaction with the environment.
Determine the condition for minimum entropy production.

3.25 Consider the following sequence of reactions: R4
1

X14
2

X24
3

::::::4
n�1

Xn�14
n
P.

Identify the states at which the entropy production will be minimal.
3.26 Consider the following synthesis reaction
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H2 þ Br2 ¼ 2HBr

This results from the following intermediate reactions

Br24
1

2Br

H2 þ Br4
2

HBrþ H

Hþ Br24
3

HBrþ Br

The affinity of the net reaction is maintained at a constant value by the flows of H2 and Br2. One
of the reactions is unconstrained. Show that the stationary state leads to minimal entropy
production.

3.27 Consider one-dimensional heat conduction in a rod with a length of L. Obtain the function that
minimizes the entropy production.

3.28 Consider an elementary reaction of A ¼ B and calculate the change of Gibbs free energy when
b ¼ Q/K changes from 0.1 to 10.

3.29 For a three-component diffusion system derive the relations between the diffusion coefficients
and the phenomenological coefficients under isothermal conditions.

3.30 Transform the thermodynamic forces and flows when the forces are independent, while the
flows are linearly dependent in a two-flow system: 0 ¼ J1 þ yJ2.

3.31 Transform the thermodynamic forces and flows when the flows are independent, while the
thermodynamic forces are linearly dependent in a two-flow system: 0 ¼ X1 þ yX2.

3.32 Transform the phenomenological equations when the flows and forces are linearly dependent,
and the forces are linearly dependent: 0 ¼ J1 þ zJ2 and 0 ¼ X1 þ yX2.
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